JOURNAL BROWSE
Search
Advanced SearchSearch Tips
QUADRATIC ρ-FUNCTIONAL INEQUALITIES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : The Pure and Applied Mathematics
  • Volume 23, Issue 2,  2016, pp.145-153
  • Publisher : Korea Society of Mathematical Education
  • DOI : 10.7468/jksmeb.2016.23.2.145
 Title & Authors
QUADRATIC ρ-FUNCTIONAL INEQUALITIES
YUN, SUNGSIK; LEE, JUNG RYE; SEO, JEONG PIL;
  PDF(new window)
 Abstract
In this paper, we solve the quadratic ρ-functional inequalities (0.1) , where is a fixed complex number with < 1, and (0.2) , where ρ is a fixed complex number with |ρ| < . Furthermore, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.
 Keywords
Hyers-Ulam stability;quadratic ρ-functional inequality;
 Language
English
 Cited by
 References
1.
T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

2.
A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.

3.
P.W. Cholewa: Remarks on the stability of functional equations. Aequationes Math. 27 (1984), 76-86. crossref(new window)

4.
G.Z. Eskandani & P. Gǎvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl. 5 (2012), 459-465.

5.
P. Gǎvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. crossref(new window)

6.
D.H. Hyers, On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224. crossref(new window)

7.
C. Park: Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl. 5 (2012), 28-36.

8.
Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. crossref(new window)

9.
K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl. 7 (2014), 18-27.

10.
F. Skof: Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. crossref(new window)

11.
S.M. Ulam: A Collection of the Mathematical Problems. Interscience Publ. New York, 1960.

12.
C. Zaharia: On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl. 6 (2013), 51-59.