JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students
Bae, Ji Hyun; Ryu, Sung Rim;
  PDF(new window)
 Abstract
The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.
 Keywords
Elementary mathematically gifted student;Affective characteristics;Mathematical reasoning ability;
 Language
Korean
 Cited by
 References
1.
강문환 (2006). 수학영재, 수학우수학생, 일반학생의 정의적 특성 비교 연구. 제주대학교 교육대학원 석사학위 논문. (Kang, M. H. (2006). The Study of The Comparison on the Emotional Characteristics among the Gifted on Math, the Excellent on Math, and the Common Students. The Graduate School of Cheju National University).

2.
강순자․김용구․정인철․임근광 (2006). 수학영재의 수학 교과에 대한 정의적 특성에 관한 연구. 한국수학교육학회 국제수학영재교육세미나프로시딩, 9(1), 41-55. (Kang, S. J., Kim, Y. G., Jung, I. C., & Lim, G. K. (2006). A study on the affective variables of gifted students in mathematics. Journal of the Korean School Mathematics Society, 9(1), 41-55.)

3.
강신포․김판수․유화전 (2003). 초등학교 수학영재 및 일반 아동의 정의적 특성 비교 연구. 학교 수학, 5(4), 441-457. (Kang, S. P., Kim, P. S., & Yoo, H. J. (2003). A comparative study on affective characteristics of mathematically gifted children and average students. School Mathematics, 5(4), 441-457.)

4.
교육부 (2015). 수학과 교육과정. 교육부 고시 제 2015-74호 [별책 8]. (Ministry of Education (2015). Mathematics curriculum. Seoul: Ministry of Education.)

5.
김민강 (2003). 수학영재의 신념, 태도 및 정서적 특성에 관한 연구. 서울대학교 대학원 석사학위 논문. (Kim, M. K. (2003). A study on the beliefs, attitude, and emotional characteristics of mathematically gifted students. The Graduate School of Seoul National University.)

6.
라병소․신경자․신준식․서동엽 (2002). 초등학생들 의 형식적 추론 능력에 관한 연구. 한국수학교육학회지 시리즈 A <수학교육>, 41(3), 291-318.. (Na, B. S., Shin, K. J., Shin, J. S., & Seo, D. Y. (2002). Investigation on the primary school children's abilities of formal reasoning. The Mathematical Education, 41(3), 291-318.)

7.
박경숙․이혜선 (1976). 학업에 대한 자아개념, 태도, 학습습관 검사 개발에 관한 연구. 한국교육개발원. (Park, K. S., & Lee, H. S. (1976). A study on the development of self-concept, attitude and learning habit tests. Seoul: Korean Educational Development Institute.)

8.
박경옥 (2003). 수학적 문제해결력 및 추론 능력과 관련된 정의적 요소와 그 차이에 관한 분석: 6학년 아동을 중심으로. 청주교육대학교 교육대학원 석사학위 논문. (Park, K. O. (2003). A study on affective factor and differences related to problem-solving in mathematics and reasoning ability-Focused on 6th graders-. The Graduate School of Chongju National University of Education.)

9.
방정숙 (1996). 초․중학생의 수학적 조건 추론 능력에 관한 분석. 한국교원대학교 대학원 석사학위 논문. (Pang, J. S. (1996). An analysis of mathematical conditional reasoning ability of elementary and middle school students. The Graduate School of Korea National University of Education.)

10.
배혜정․남승인 (2005). 아동의 메타인지를 유발하는 발문이 수학적 추론 능력에 미치는 영향. 한국수학교육학회지 시리즈 C <초등수학교육>, 9(1), 43-58. (Bae, H. J., & Nam, S. I. (2005). Effects of metacognitive instructions on mathematical reasoning ability in the elementary school students. Education of Primary School Mathematics, 9(1), 43058.)

11.
송상헌 (1998). 수학영재성 측정과 판별에 관한 연구. 서울대학교 대학원 박사학위논문. (Song, S. H. (1998). A study on the measurement and discrimination of the mathematical giftedness. Unpublished doctoral dissertation, Seoul National University.)

12.
신성균․황혜정․김수진․성금순 (1992). 교육의 본질 추구를 위한 수학 교육 평가 체제 연구(III). 한국교육개발원. (Shin, S. K., Hwang, H. J., Kim, S. J., & Seong, G. S. (1992). A study on assessment system of mathematical education for essence of education(III). Seoul: Korean Educational Development Institute.)

13.
유세희 (2009). 초등학교 5학년 학생들의 수학적 추론 능력에 대한 실태 조사. 한국교원대학교 대학원 석사학위 논문. (Yoo, S. H. (2009). A survey on 5th grade students' mathematical reasoning-Focused on figures-. The Graduate School of Korea National University of Education.)

14.
이영주 (1999). 초등학교 고학년 아동의 정의적 특성, 수학적 문제해결력, 추론능력간의 관계. 한국교원 대학교 대학원 석사학위 논문. (Lee, Y. J. (1999). A study on correlations among affective characteristics, mathematical problem solving and reasoning ability of 6th graders in elementary school. The Graduate School of Korea National University of Education).

15.
전평국․김은희․김원경 (2002). 수학적 추론 능력 평가 기준에 관한 연구. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 13(2), 425-455. (Jeon, P. K., Kim, E. H., & Kim, W. K. (2002). A study on the scoring framework for mathematical reasoning ability. Communications of Mathematical Education, 13(2), 425-455.)

16.
정재숙․전평국 (2002). 전제의 해석 유형이 아동의 수학적 추론 결과에 미치는 영향 분석. 한국수학교육학회지 시리즈 E <수학교육 논문집>, 13(1), 161-167. (Jeong, J. S., & Jeon, P. K. (2002). A study on the effects of analysis types of premise on elementary school children's mathematical reasoning Communications of Mathematical Education, 13(1), 161-167.)

17.
한미진 (2002). 소집단 토의 학습이 추론 능력과 수학적 태도 향상에 미치는 효과. 한국교원대학교 교육대학원 석사학위 논문. (Han, M. J. (2002). The effect of small group discussion on improving reasoning ability and mathematical attitude of the students. The Graduate School of Korea National University of Education.)

18.
황동옥 (1997). 추론 능력 향상을 위한 학습자료 개발. 한국교원대학교 대학원 석사학위 논문. (Hwang, T. O. (1997). A development of a learning materials for improving mathematical reasoning ability. The Graduate School of Korea National University of Education.)

19.
Anderson, L. W. (1981). Assessing affective characteristics in the school. Boston, NY: Allyn and Bacon, Inc.

20.
Fisibein, M., & Aizen, I. (1975). Belief, attitude, intention, and behavior: A introduction to theory and research. reading. MA: Addison-Wesley.

21.
Getzels, J. W. (1966). The problem of interests: A reconsideration. In H. A. Robinson(Ed.), Reading: Seventy-five years of progress(pp. 97-106). Supplementary Education Monographs.

22.
NCTM (1989). Curriculum and evaluation standards for school mathematics. Reston. VA: The National Council of Teachers of Mathematics, Inc.

23.
NCTM (2000). Principles and standards for school mathematics. Reston, VA: The Auther. 류희찬, 조완영, 이경화, 나귀수, 김남균, 방정숙 공역 (2007). 학교수학을 위한 원리와 규준. 서울: 경문사.

24.
Sternberg, R. J. (1982). Reasoning, problem solving, and intelligence. In R. J. Sternberg(Ed.), Handbook of human intelligence(pp.225-307). London: Cambridge University Press.