An Analysis of Generalization Class using GSP for the 8th Grade Students in a Math Gifted Class - Focused on Viviani theorem -

Title & Authors
An Analysis of Generalization Class using GSP for the 8th Grade Students in a Math Gifted Class - Focused on Viviani theorem -
Kang, Jeong Gi;

Abstract
This study is aimed to implement a preferred generalization classes for gifted students. By designing and applying the generalization lesson using GSP, we tried to investigate the characteristics on the class. To do this, we designed a lesson on generalization of Viviani theorem and applied to 13 8th grade students in a math gifted class. As results, we could extract five subjects as followings; mediating the conjecture by GSP and checking the pattern, misunderstanding the confirm by GSP as a proof and its overcoming, digressing from the topic and cognitive gap, completing the proof by incomplete conjecture, gap between the generalization and understanding generality. Based on this subjects, we discussed the educational implications in order to help implement a preferred generalization classes for gifted students.
Keywords
Language
Korean
Cited by
References
1.
강정기 (2013). 본질적 속성 추출을 통한 일반화에 관한 연구. 경상대학교 박사학위논문. (Kang, J.G. (2013). A study on the generalization through the extraction of essential attributes. Doctoral dissertation, GSNU.)

2.
김성수.박달원 (2013). 유추를 활용한 코사인 법칙의 일반화 지도 방안. 한국학교수학회논문집. 16(4), 927-941. (Kim, S.S. & Park, D.W. (2013). A study on teaching methods of extension of cosine rule using analogy. Journal of the Korea School Mathematics Society, 16(4), 927-941.)

3.
김유경.방정숙 (2012). 초등학교 수학 수업에 나타난 수학적 연결의 대상과 방법 분석. 한국수학교육학회지 시리즈 A <수학교육>, 51(4), 455-469. (Kim, Y.K. & Bang, J.S. (2012). An analysis of th objects and methods of mathematical connections in elementary mathematics instruction, The Mathematical Education, 51(4), 455-469.)

4.
김진호 (2012). 학습자 중심 수학 수업을 위한 수업자료의 몇 가지 특징. 한국수학교육학회지 시리즈 C <초등수학교육>, 15(3), 189-199. (Kim, J.H. (2012) On some characteristics of instructional materials for learner-mathematics instruction. Education of Primary School Mathematics, 15(3), 189-199.)

5.
문혜령.고상숙 (2010). GSP를 활용한 삼각함수에서 학습부진아의 수학화 과정에 관한 사례연구. 한국수학교육 학회지 시리즈 A <수학교육>, 49(3), 353-373. (Moon, H.R., & Choi-Koh, S.S. (2010). A case study on slow learners' mathematization of trigonometric functions, using GSP. The Mathematical Education, 49(3), 353-373.)

6.
방정숙 (2002). 수학 학습에서 도구의 역할에 관한 관점: 수학적 어포던스와 상황적 어포던스의 조정. 수학교육 학연구, 12(3), 331-351. (Pang, J.S. (2002). The role of tools in mathematical learning: Coordinating mathematical and ecological affordances. The Journal of Education Research in Mathematics, 12(3), 331-351.)

7.
손홍찬 (2011). GSP를 활용한 역동적 기하 환경에서 기하적 성질의 추측. 학교수학, 13(1), 107-125. (Son, H.C. (2011). A study on students' conjecturing of geometric properties in dynamic geometry environment using GSP. School Mathematics, 13(1), 107-125.)

8.
송상헌.정영옥.장혜원 (2006). 초등학교 6학년 수학영재들의 기하 과제 증명 능력에 관한 사례 분석. 학교수학, 16(4), 327-344. (Song, S.H., Jeong, Y.O., & Chang, H.W. (2006). Mathematically gifted 6th grade students' proof ability for a geometrric problem. School Mathematics, 16(4), 327-344.)

9.
신승윤.류성림 (2014). 초등수학영재의 수학 창의적 문제해결력과 메타인지와의 관계. 한국수학교육학회지 시리즈 C <초등수학교육>, 17(2), 95-111. (Shin, S.Y., & Rye, S.R. (2014). The relationship between mathematically gifted elementary students' math creative problem solving ability and metacognition. Education of Primary School Mathematics, 17(2), 95-111.)

10.
신유경.강윤수.정인철 (2008). GSP가 증명학습에 미치는 영향: 사례연구. 한국학교수학회논문집, 11(1), 55-68. (Shin, Y.G., Kang, Y.S., & Jeong, I.C. (2008). An influence of GSP to learning process of proof of middle school students: case study. Journal of the Korea School Mathematics Society, 11(1), 55-68.)

11.
영재교육종합데이터베이스 (2015). https://ged.kedi.re.kr/stss/viewStatistic.do. (Gifted Education Database (2015). https://ged.kedi.re.kr/stss/viewStatistic.do.)

12.
유미경.류성림 (2013). 초등수학영재와 일반학생의 패턴의 유형에 따른 일반화 방법 비교. 학교수학, 15(2), 459-479. (Yu, M.G., & Rye, S.R. (2013). A comparison between methods of generalization according to the types of pattern of mathematically gifted students and non-gifted students in elementary school. School Mathematics, 15(2), 459-479.)

13.
이헌수.이광호 (2012). 중등 영재학생들의 GSP를 활용한 내분삼각형 넓이의 일반화. 한국학교수학회논문집, 15(3), 565-584. (Lee, H.S., & Lee, G.H. (2012). The generalization of the area of internal triangles for the GSP use of mathematically gifted students. Journal of the Korea School Mathematics Society, 15(3), 565-584.)

14.
장정은.정윤숙.최양희.김성원 (2013). 과학 영재들의 과제집착력 특성 탐색. 한국과학교육학회지, 33(1), 1-16. (Chang, J.E., Jeong, Y.S., Choi, Y.H., & Kim, S.W. (2013). Exploring the charateristics of science gifted students' task commitment. Journal of The Korean Association For Science Education, 33(1), 1-16.)

15.
장한나라 (2013). 우리나라 수학영재교육의 현황과 효율적 운영방안 : 미국, 중국, 싱가포르와 비교하여. 경희대학교 교육대학원 석사학위논문. (Chang, H.N.R. (2013). Present Condition of Our Country's Mathematics Talent Education and an Efficient Management Plan: Compared with the US, China, Singapore. Master's thesis, GHU.)

16.
장혜원 (2015). 2학년 쌓기나무 수업에서의 수학적 의사소통 분석. 학교수학, 17(2), 223-239. (Chang, H.W. (2015). Analysis of mathematical communication in building-block lessons for 2nd graders. School Mathematics, 17(2), 223-239.)

17.
정찬식.노은환 (2014). 학생중심의 문제해결 모형 개발 및 효과 분석. 한국수학교육학회지 시리즈 C <초등수학 교육>, 17(1), 57-75. (Jeong, C.S., & Roh, E.H. (2014). Development and analysis of effect for problem solving model of student-based. Education of Primary School Mathematics, 17(1), 57-75.)

18.
최병훈.방정숙 (2012). 초등 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교. 수학교육학연구, 22(4), 619-636. (Choi, B.H., & Bang, J.S., (2012). A comparison of mathematically gifted students' solution strategies of generalizing geometric patterns. The Journal of Education Research in Mathematics, 22(4), 619-636.)

19.
최종현.송상헌 (2005). 주제 탐구형 수학 영재 교수.학습 자료 개발에 관한 연구. 학교수학, 7(2), 169-192. (Choi, J.H., & Song, S.H. (2005). A study on the development of project based teaching.learning materials for the mathematically gifted. School Mathematics, 7(2), 169-192.)

20.
허민 (1999). 페르마의 마지막 정리. 한국수학사학회지, 12(2), 1-13. (Her, M. (1999). Fermat's last theorem, Historia Mathematica, 12(2), 1-13.)

21.
Ainley, J., Bills, L., & Wilson, K. (2005). Designing spreadsheet-based tasks for purposeful algebra. International Journal of Computers for Mathematical Learning, 10(3), 191-215.

22.
Becker, J. R., & Rivera, F. (2005). Generalization strategies of beginning high school algebra students. In Chick, H. L., & Vincent, J. L.(Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education(Vol.4, pp121-128). Melbourne: PME.

23.
Bills, L., Ainley, J., & Wilson, K. (2006). Modes of algebraic communication-moving between natural language, spreadsheet formulae and standard notation. For the Learning of Mathematics, 26(1), 41-46.

24.
Bills, L., & Rowland, T. (1999). Examples, generalization and proof. In L. Brown(Ed.), Making meaning in mathematics. Advanced in mathematics education(Vol.1. pp.103-116). York, UK: QED.

25.
Chazan, D. (1993). High school geometry students' justification for their views of empirical evidence and mathematical proof, Educational Studies in Mathematics 24, 359-387.

26.
Cho, H., Han, H., Jin, M., Kim, H., & Song, M. (2004). Designing a microworld: Activities and programs for gifted students and enhancing mathematical creativity. Proceeding of the 10th conference of the International Congress on Mathematics Education, TSG 4: Activities and Programs for Gifted Students, pp.110-118. Copenhagen, Demark.

27.
Davydov, V. V. (1990). Types of generalization in instruction. In Kilpatrick, J.(Ed.) Soviet Studies in Mathematics Education. Vol2. Reston VA: NCTM.

28.
El-Demerdash, M. & Kortenkamp, U. (2009) The effectiveness of an enrichment program using dynamic geometry software in developing mathematically gifted students' geometric creativity. Proceedings of the 9th International Conference on Technology in Mathematics Teaching, Metz, France: ICTMT 9.

29.
Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3(3), 195-227.

30.
Hadas, N., Hershkowitz, R., & Schwarz, B. B. (2000). The role of contradiction and uncertainty in promoting the need to prove in dynamic geometry environments. Educational Studies in Mathematics, 44, 127-150.

31.
Harel, G., & Tall, D. (1989). The general, the abstract and the generic in advanced mathematics. For the Learning of Mathematics, 11(1), 38-42.

32.
Jerwan, F. (2002). Thinking education: Concepts and applications. Oman, Jordan: Dar Alfikr.

33.
Jonassen, D. (2000). Computers in the classroom: Mindtools for critical thinking (2nd ed.). Englewood Cliffs, New Jersey: Merrill.

34.
Lee, K. H. (2005). Mathematically gifted students' geometrical reasoning and informal proof. In Helen, L. C. & Jill, L. V.(Eds.), Proceeding 29th Conference of the International Group for the Psychology of Mathematics Education(Vol3, pp.241-248).

35.
Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bendnarz, C. Kieran, & L. Lee(Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 87-106). Dordrecht, Netherlands: Kluwer.

36.
Liu, M., & Bera, S. (2005). An analysis of cognitive tool use patterns in a hypermedia learning environment. Educational Technology Research and Development, 53(1), 5-21.

37.
Mason, J. (1996). Expressing generality and roots of algebra. In Bendnarz, N., Kieran, C., & Lee, L.(Eds.), Approaches to algebra(pp65-86) . Dordrecht: Kluwer.

38.
Mohamed, A. I. Z. (2003). Enrichment program in geometry for creative thinking development for talented students, in mathematics in the preparatory stage. Master thesis, Tanta University, Egypt.

39.
Orton, A., & Orton, J. (1999). Pattern and the approach to algebra. In A. Orton(Ed.), Pattern in the teaching and learning of mathematics(pp.104-120). London, UK: Cassell.

40.
Pyryt, M. (2003). Technology and the gifted. In Colangelo, N., & Davis, G.(Eds.), Handbook of gifted education (pp.582-589). Boson: Allyn & Bacon.

41.
Radford, L. (2003). Gestures, speech, and the spouting of signs: A semiotic-cultural approach to students' types of generalization. Mathematical Thinking and Learning, 5(1), 37-70.

42.
Renzulli, J. S. (2000). The identification and development of giftedness as a paradigm for school reform.

43.
Sheffield, L. J. (1999). Developing mathematically promising students. Reston VA: NCTM.

44.
Sheffield, C. C. (2007). Technology and the gifted adolescent: Higher order thinking, 21st century literacy, and the digital native. Meridian Middle School Computer Technologies Journal, 10, 5. Retrieved from http://www.ncsu.edu/meridian/sum2007 /gifted/index.htm

45.
Stacey, K. (1989). Finding and using patterns in linear generalizing problems. Educational Studies in Mathematics, 20, 147-164.

46.
Stacey, K., & McGregor, M. (2001). Curriculum reform and approaches to algebra. In R. Sutherland, T. Rojano, A. Bell, & R. Lins(Eds.), Perspectives on school algebra(pp. 141-154). Dordrecht, Netherlands: Kluwer.

47.
Van Tassel-Baska, J. (1986). Effective curriculum and instructional models for talented students. Gifted Child Quarterly, 30(4), 164-169

48.
Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2007). The role of examples in forming and refuting generalizations. ZDM Mathematics Education, 40, 131-141.