Advanced SearchSearch Tips
Magnetic analysis of a finite solenoid
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Magnetic analysis of a finite solenoid
Lee, Ju-Hee; Hwang, Seon; Lee, Dong-Yeon;
  PDF(new window)
In this paper, the theoretical analysis for a solenoid with a finite length was verified by the finite element simulation. The solenoids are widely being used in the field of mechanical, industrial, medical industry due to their simple structure and fast responses. Solenoid actuators use an electromagnetic force. A magnetic field is formed around the solenoid coil when a current is applied. The magnetic force generated by the magnetic field enables an inside plunger to move linearly. The axial and radial magnetic fields (magnetic flux density, B) at a certain point were calculated from the Biot-Savart`s law and compared with the simulation analysis from the ANSYS-Magnetostatic S/W. Comparison result, an error exists in the error range, and could therefore verify the accuracy.
Axial magnetic field;Magnetic flux density;Magnetostatics simulation;Radial magnetic field;Solenoid coil;
 Cited by
전자기 제어 밸브를 위한 벨로우즈의 기계적 거동에 관한 연구,손인서;황선;신동길;

한국산학기술학회논문지, 2016. vol.17. 3, pp.432-437 crossref(new window)
S. B. Lee, S. H. Baek, Y. S. Kwon, E. D. Ro, C. H. Lee, "Optimization of Solenoid Valve Using Compromise Decision Support Problems", KSAE 2011 Annual Conference, pp. 976-981, 2011.

I. S. Jung, J. H, S. B. Yoon, D. S. Hyun, "A Study on the Shape Optimization of Solenoid Actuator", Trans. of KIEE, vol 47, pp. 1325-1330, 1998.

G. B. Oriol, G. A. Samuel, S. A. Antoni, M. M. Daniel, F. C. L., "Linear elctromagnetic actuator modeling for optimization of mechatronic and adaptronic systems", Mechatronics 17, pp. 153-163, 2007. DOI: crossref(new window)

J. Yoo, H.-J. Soh, "An optimal design of magnetic actuators using topopgy optimization and the response surface method", Microsyst Technol, pp. 1252-1261, 2005. DOI: crossref(new window)

S. N. Yun, "Design of Proportional Solenoid Actuator using Maxwell CAE Software", (Journal of Drive and Control, pp. 32-36, 2012.

R. Ravaud, G. Lemarquand, S. Babic, V. Lemarquand, C. Akyel, "Cylindrical Magnets and Coils:Fields, Forces, and Inductances", IEEE Transaction on Magnetics, vol 46, pp. 3585-3590, 2010. DOI: crossref(new window)

R. Will, C. Ben, Z. Anthony, "A Simplofied Force Equation for Coaxial Cylindrical Magnets and Thin Coils", IEEE Transaction on Magnetics, vol 47, pp. 2045-2049, 2011. DOI: crossref(new window)

R. Will, C. Ben, Z. Anthony, "Axial Force Between a Thick Coil and a Cylindrical Permanent Magnet : Optimizing the Geometry of an Electromagnetic Actuator", IEEE Transaction on Magnetics, vol 48, pp. 2479-2487, 2012. DOI: crossref(new window)

S. I. Babic, C. Akyel, "Magnetic Force Calculation Between Thin Coaxial Circular Coils in Air", IEEE Transaction on Magnetics, vol 44, pp. 445-452, 2008. DOI: crossref(new window)

Timothy H. Boyer, "Classical Electromagnetic Interaction og a Charged Particle with a Constant-Curent Solenoid", Physical review D, vol. 8, pp. 1667-1678, 1973. DOI: crossref(new window)