Advanced SearchSearch Tips
Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Performance Comparison between Indirect Evaporative Cooler and Regenerative Evaporative Cooler made of Plastic/Paper
Kim, Nae-Hyun;
  PDF(new window)
The Korean summer is hot and humid, and air-conditioners consume considerable amounts of electricity. In such cases, the simultaneous use of indirect evaporative coolers may help reduce the sensible heat and save electricity. In this study, heat transfer and pressure drop characteristics of indirect or regenerative evaporative coolers made from plastic/paper are investigated. The results showed that heat and mass transfer model based on the method predicted the indirect evaporation efficiencies, cooling capacities and pressure drops adequately. Both for indirect or regenerative evaporative cooler, the indirect evaporation efficiency increased with increasing dry channel inlet temperature or relative humidity. The indirect evaporation efficiency of the regenerative evaporative cooler was larger than that of the indirect evaporative cooler.
Indirect evaporative cooler;Regenerative evaporative cooler;Performance;Paper;Plastic;
 Cited by
Residential Humidifying Element Made of Cellulose and PET Composite, Journal of the Korea Academia-Industrial cooperation Society, 2016, 17, 4, 13  crossref(new windwow)
Duan, Z., Zhan, C., Zhang, X., Mustafa, M. Zhao, X., Alimohammadisgvand, B. and Hasan, A., "Indirect evaporative cooling: past, present and future potentials," Renew. Sustain. Energy Rev., Vol. 16, pp. 6823-6850, 2012. DOI: crossref(new window)

Jaber, S. and Ajib, S., "Evaporative cooling as an efficient system in Mediterranean region," Appl. Therm. Eng., Vol. 31, pp. 2590-2596, 2011. DOI: crossref(new window)

Caliskan, H., Dincer, I. and Hepbasil, A., "Exergoeconomic enviroecomomic and sustainability analyses of a novel air cooler," Energy Build., Vol. 55, pp. 747-756, 2012. DOI: crossref(new window)

Costello, B. and Finn, D., "Thermal effectiveness characteristics of low approach indirect evaporative cooling systems in buildings," Energy Build., Vol. 39, pp. 1235-1243, 2007. DOI: crossref(new window)

Maheshwari, G. P., Al-Ragom, F. and Suri, R. K., "Energy saving potential of an indirect evaporative cooler," Appl. Energy, Vol. 69, pp. 69-76, 2001. DOI: crossref(new window)

Santamouris, M. and Kolokotsa, D.. "Passive cooling dissipation techniques for buildings and other structures: the state of the art," Energy Build., Vol. 57, pp. 74-94, 2013. DOI: crossref(new window)

Watt, J. D. and Brown, W. K., Evaporative Air Conditioning Handbook, 3rd ed., The Fairmont Press Inc., 1997.

Pescod, D., "A heat exchanger for energy saving in an air conditioning plant," ASHRAE Trans., Vol. 85., Pt. 2, pp. 238-251, 1979.

Maclaine-Cross, I. L. and Banks, P. J., "A general theory of wet surface heat exchangers and its application to regenerative cooling," J. Heat Transfer, Vol. 103, pp. 578-585, 1981. DOI:

Kettleborough, C. F. and Hsieh, C. S., "The thermal performance of the wet surface plastic plate heat exchanger used in an indirect evaporative cooler," J. Heat Transfer, Vol. 105, pp. 366-373, 1983. DOI: crossref(new window)

Parker, R. O. and Treybal, R. E., "The heat mass transfer characteristics of evaporative coolers," Chem. Eng. Prog. Symp. Ser. Vol 57, No. 32, pp. 138-149, 1962.

Hasan, A. an Siren, K., "Performance investigation of plain and finned tube evaporatively cooled heat exchangers," Appl. Therm. Eng., Vol. 23, No. 3, pp. 325-340, 2003. DOI: crossref(new window)

Zalewski, W. and Gryglaszewski, P. A., "Mathematical model of heat and mass transfer processes in evaporative coolers," Chem. Eng. Process, Vol. 36, No. 4, pp. 271-280, 1977. DOI:

Ren, C. and Yang, H., "An analytical model for the heat and mass transfer processes in indirect evaporative cooling with parallel/counter flow configurations," Int. J. Heat Mass Transfer, Vol. 49, pp. 617-627, 2006. DOI: crossref(new window)

Hasan, A., "Going below the wet-bulb temperature by indirect evaporative cooling: Analysis using a modified ${\epsilon}$-NTU method," Appl. Energy, Vol. 89, pp. 237-245, 2012. DOI: crossref(new window)

Cui, X., Chua, K. J., Islam, M. R. and Yang, W. M., "Fundamental formulation of a modified LMTD method to study indirect evaporative heat exchangers," Energy Conservation Management, Vol. 88, pp. 372-381, 2014. DOI: crossref(new window)

Riangvilaikul, B. and Kumar, S., "An experimental study of a novel dew point evaporative cooling system," Energy Build., Vol. 42, pp. 637-644, 2010. DOI: crossref(new window)

Zhao, X., Liu, S. and Riffat, S. B., "Comparative study of heat and mass exchanging materials for indirect evaporative cooling systems," Build. Environ., Vol. 43, No. 11, pp. 1902-1911, 2008. DOI: crossref(new window)

KS M 896, Paper and plate - Measurement of water absorption rate in water, 2013.

ASHRAE Standard 41.1, Standard Method for Temperature Measurement, ASHRAE, 1986.

ASHRAE Standard 41.2, "Standard Method for Laboratory Air-Flow Measurement, ASHRAE, 1987.

KS C 9306, Air Conditioner, Korean Standard Association, 2010.

ASHRAE Standard 143, Method of test for rating indirect evaporative coolers, ASHRAE, 2007.

Klein S. J. and McClintock, F. A., "The description of uncertainties in a single sample experiments," Mech. Eng. Vol. 75, pp. 3-9, 1953.

Mirth, D. R. Ramadhyani, S. and Hittle, D. C., "Thermal performance of chilled water cooling coils at low water velocities," ASHRAE Trans., Vol. 99, Pt., 1, pp. 43-53, 1993.

Pirompugd, W., Wang, C. C. and Wongwises, S., "A review on reduction method for heat and mass transfer characteristics of fin-and-tube heat exchangers under dehumidifying conditions," Int. J. Heat Mass Transfer, Vol. 52, No. 9-10, pp. 2370-2378, 2009. DOI: crossref(new window)

Kim, N.-H., Oh, W.-K., Cho, J.-P., Park, W.-Y. and Youn, B., "Data reduction on the airside heat transfer coefficients of heat exchangers under dehumidifying conditions," Korean J. Air-Cond. Refrig., Vol. 15, No. 1, pp. 73-85, 2003.

Holman, J. P., Heat Transfer, 8th ed., McGraw-Hill Pub., 2000.

Shah, R. K. and London, A. L., Laminar Flow in Ducts, Academic Press, 1989.

Johnson, J. E., Heat and mass transfer between two fluid streams separated by a thin permeable barrier, Ph.D Thesis, Univ. Minnesota, 1997.

Kays, W. M. and London, A. L., Compact Heat Exchangers, 3rd ed., Krieger Pub., 1984.