Advanced SearchSearch Tips
Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Size and Dispersion Characteristics of Silver Nanoparticles Prepared Using Liquid Phase Reduction Method
Lee, Jong Jib;
  PDF(new window)
This work investigates the size and dispersion characteristics of silver nanoparticles synthesized by a liquid phase reduction method using PAA. The experimental variables were the molecular weight and doses of the PAA, reducing agent, dispersant, and organic solvent (ethanol-acetone). UV-visible spectrophotometer results confirm the formation of the silver particles, and SEM indicates size in the nanometer range. As the ultrasonication time increases, there is a tendency toward smaller agglomerates of nanoparticles. The agglomerates were dispersed into 1-5 agglomerates of particles by ultrasonication for 3 hours or more. Relatively spherical nanoparticles were produced with a completely homogeneous dispersion and size of 49.56-85.75 nm by ultrasonication using BYK-192, a dispersant containing copolymer with a pigment affinic group. The average size of the silver nanoparticles was increased to 36.82, 50.66, and 56.06 nm with increasing molecular weight of PAA. Also, the size of the nanoparticles increased with the capping of PAA on the surfaces of the nanoparticles when increasing the amount of PAA. The addition of hydrazine as a reducing agent produced relatively small particles because many nuclei were created by the reduction reaction. The ethanol-acetone solvent helped with the regular arrangement of the silver nanoparticles.
Silver nanoparticle;Silver;nanoparticle;Dispersion;liquid phase reduction;
 Cited by
Y. Xia, Y. Sun, Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science, 13, 79-2176, 2002.

H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, G. Q. Xu, Photochemical Formation of Silver Nanoparticles in Poly(N-vinylpyrrolidone), Langmuir, 12, 12-909, 1996. DOI: crossref(new window)

C. Baker, A. Pradhan, L. Pakstis, D. J. Pochan, S. I. Shah, Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol., 5, 244, 2005. DOI: crossref(new window)

B.U. Lee, Y.J. Kim, C.H. Lee, S.H. Yun, G.N. Bae, J.H. Ji, Development of a fungal spore aerosol generator: Test with Cladosporium cladosporioides and Penicillium citrinum, J. Microbiol. Biotechnol., 18(4), 795-798, 2008.

C. N. Lok, C. M. Ho, R. Chen,W. Y. Yu, H. Sun, P. K. Tam, J. F. Chiu, C.M.Chen, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome. Res., 5, 916-924, 2006. DOI: crossref(new window)

A. Z. Melaiye, K. Sun, A. Hindi, Milsted, D. Ely, D. H. Reneker, C. A. Tessierand, W. J. Youngs, Silver (I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity, J. Am. Chem. Soc., 127, 2285, 2005. DOI: crossref(new window)

S. Franke, G. Grass, D. H. Nies, The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions, J. Microbiol., 51, 956, 2001. DOI: crossref(new window)

S. I. Shin, S. G. Oh., Preparation of nano particles using surfactants, Prosp. Ind. Chem. 4(2), 40-47, 2001.

Y. H. Kim, The Effect of zeta-potential on the stabilization of silver nanoparticle colloid prepared by alcohol reduction method with PVP, J. Korean Ind. Eng. Chem., 14(4), 487-492, 2003.

A. Dietrich, A. Neubrand, Effects of particle size and molecular weight of polyethylenimine on properties of nanoparticulate silicon dispersions, J. Am. Ceram. Soc., 84, 12-806, 2001. DOI: crossref(new window)

X. Li, J. J. Lenhart, H. W. Walker, Aggregation Kinetics and Dissolution of Coated Silver Nanoparticle, Langmuir, 28, 1095-1104, 2011. DOI: crossref(new window)

K. S. Chou and C. Y. Ren, Synthesis of nanosized silver particles by chemical reduction method, Mater. Chem. Phys., 64, 46-241, 2000. DOI: crossref(new window)

A. Pyatenko, M. Yamaguchi, M. Suzuki, Synthesis of Spherical Silver Nanoparticles with Controllable Sizes in Aqueous Solutions, J. Phys. Chem. C, 111, 7910-7917, 2007. DOI: crossref(new window)

X. Li, J. J. Lenhart, H. W. Walker, Dissolution-Accompanied Aggregation Kinetics of Silver Nanoparticles, Langmuir, 26(22), 16690-16698, 2010 DOI: crossref(new window)