JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Study on Modeling and Forecasting of Mobile Phone Sales Trends
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Study on Modeling and Forecasting of Mobile Phone Sales Trends
Kim, Min-Jeong;
  PDF(new window)
 Abstract
Among high-tech products, the mobile phone has experienced a rapid rate of innovation and a shortening of its product life cycle. The shortened product life cycle poses major challenges to those involved in the creation of forecasting methods fundamental to strategic management and planning systems. This study examined whether the best model applies to the entire diffusion life span of a mobile phone. Mobile phone sales data from a specific mobile service provider in Korea from March of 2013 to August of 2014 were analyzed to compare the performance of two S-shaped diffusion models and two non-linear regression models, the Gompertz, logistic, Michaelis-Menten, and logarithmic models. The experimental results indicated that the logistic model outperforms the other three models over the fitted region of the diffusion. For forecasting, the logistic model outperformed the Gompertz model for the period prior to diffusion saturation, whereas the Gompertz model was superior after saturation approaches. This analysis may help those estimate the potential mobile phone market size and perform inventory and order management of mobile phones.
 Keywords
Forecasting;Mobile phone sales;S-shaped diffusion model;Non-linear regression model;
 Language
English
 Cited by
 References
1.
S. D. Wu, B. Aytac, R. T. Berger, C. A. Armbruster, "Managing Short Life-Cycle Technology Products for Agere Systems", Interfaces, Vol. 36, Issue 3, pp. 234-247, 2006. DOI: http://dx.doi.org/10.1287/inte.1050.0195 crossref(new window)

2.
T. Teng, "Cell phone models change frequently", NEWSVINE, 2009 [cited 2009 Feb 24], Available From: http://www.newsvine.com/_news/2009/02/24/2471152-cell-phone-models-change-frequently(accessed Feb, 24, 2016)

3.
A. Botelho, L. C. Pinto, "The diffusion of cellular phones in Portugal", Telecommunications Policy, Vol. 28, Issues 5-6, pp. 427-437, 2004. DOI: http://dx.doi.org/10.1016/j.telpol.2003.11.006 crossref(new window)

4.
L. F. Gamboa, J. Otero, "An estimation of the pattern of diffusion of mobile phones: The case of Colombia", Telecommunications Policy, Vol. 33, Issues 10-11, pp. 611-620, 2009. DOI: http://dx.doi.org/10.1016/j.telpol.2009.08.004 crossref(new window)

5.
C. Michalakelis, D. Varoutas, T. Sphicopoulos, "Diffusion models of mobile telephony in Greece", Telecommunications Policy, Vol. 32, Issues 3-4, pp. 234-245, 2008. DOI: http://dx.doi.org/10.1016/j.telpol.2008.01.004 crossref(new window)

6.
F. Wu, W. Chu, "Diffusion models of mobile telephony", Journal of Business Research, Vol. 63, Issue 5, pp. 497-501, 2010. DOI: http://dx.doi.org/10.1016/j.jbusres.2009.04.008 crossref(new window)

7.
K. Sandrasegaran, K. Pillay, P. Tsang, "Forecasting the Growth of GSM networks in Australia using Regression Analysis", Proc. of 3rd Workshop on Internet, Telecommunications and Signal Processing, pp. 299-305, 2004.

8.
L. Wu, K. Sandrasegaran, "Forecasting Asia Pacific Mobile Market Trends using Regression Analysis", Proc. of 6th International Conference on the Management of Mobile Business, pp. 1-6, 2007. DOI: http://dx.doi.org/10.1109/icmb.2007.30

9.
T. Levitt, "Exploit the product life cycle", Harvard Business Review, Vol. 43, pp. 81-94, 1965.

10.
QuickMBA, "The product life cycle", Available From: http://www.quickmba.com/marketing/product/lifecycle/ (accessed March, 14, 2016)

11.
P. McBurney, S. Parsons, J. Green, "Forecasting market demand for new telecommunications services: an introduction", Telematics and Informatics, Vol. 19, Issue 3, pp. 225-249, 2002. DOI: http://dx.doi.org/10.1016/S0736-5853(01)00004-1 crossref(new window)

12.
E. M. Rogers, Diffusion of Innovations(5th Edition). Free Press, 2003.

13.
F. M. Bass, "A new product growth for model consumer durables", Management Science, Vol. 15, No. 5, pp. 215-227, 1969. DOI: http://dx.doi.org/10.1287/mnsc.15.5.215 crossref(new window)

14.
V. Mahajan, E. Muller, F. M. Bass, "New product diffusion models in marketing: A review and directions for research", Journal of Marketing, Vol. 54, No. 1, pp. 1-26, 1990. DOI: http://dx.doi.org/10.2307/1252170 crossref(new window)

15.
D. G. Bonett, "New product sales forecasting using a growth curve model", Journal of Applied Business Research, Vol. 3, No. 2, pp. 119-123, 1987. DOI: http://dx.doi.org/10.19030/jabr.v3i2.6540 crossref(new window)

16.
N. Meade, "Forecasting using growth curves-an adaptive approach", Journal of the Operational Research Society, Vol. 36, No. 12, pp. 1103-1115, 1985. DOI: http://dx.doi.org/10.2307/2582342 crossref(new window)

17.
H. Gruber, F. Verboven, "The diffusion of mobile telecommunications services in the European Union", European Economic Review, Vol. 45, Issue 3, pp. 577-588, 2001. DOI: http://dx.doi.org/10.1016/S0014-2921(00)00068-4 crossref(new window)

18.
P. Rouvinen, "Diffusion of digital mobile telephony: Are developing countries different?", Telecommunications Policy, Vol. 30, Issue 1, pp. 46-63, 2006. DOI: http://dx.doi.org/10.1016/j.telpol.2005.06.014 crossref(new window)

19.
G. Intepe, T. Koc, "The use of S curves in technology forecasting and its application on 3D TV technology", International Scholarly and Scientific Research & Innovation, Vol. 6, No. 11, pp. 2491-2495, 2012.

20.
P. Pflaumer, "Forecasting the U.S. Population with the Gompertz Growth Curve", Proc. of Joint Statistical Meetings, pp. 4967-4981, 2012.

21.
C. V. Trappey, H. Wu, "An evaluation of the time-varying extended logistic, simple logistic, and Gompertz models for forecasting short product lifecycles", Advanced Engineering Informatics, Vol. 22, Issue 4, pp. 421-430, 2008. DOI: http://dx.doi.org/10.1016/j.aei.2008.05.007 crossref(new window)

22.
J. G. De Gooijer, R. J. Hyndman, "25 years of time series forecasting", International Journal of Forecasting, Vol. 22, Issue 3, pp. 443-473, 2006. DOI: http://dx.doi.org/10.1016/j.ijforecast.2006.01.001 crossref(new window)

23.
S. Park, J. Oh, "Regression models based on cumulative data for forecasting of new product", Journal of the Korean Data & Information Science Society, Vol. 20, No. 1, pp. 117-124, 2009.

24.
V. Bianco, O. Manca, S. Nardini, "Electricity consumption forecasting in Italy using linear regression models", Energy, Vol. 34, Issue 9, pp. 1413-1421, 2009. DOI: http://dx.doi.org/10.1016/j.energy.2009.06.034 crossref(new window)

25.
J. Schwartz, A. Marcus, "Mortality and air pollution in London: a time series analysis", American Journal of Epidemiology, Vol. 131, Issue 1, pp. 185-194, 1990.

26.
Musicmetric, "Time series views: daily and cumulative", Available from: http://knowledgebase.musicmetric.com/tutorials/basic-app-usage/daily-and-cumulative-views/(accessed Feb, 20, 2016)

27.
P. H. Franses, D. v. Dijk, Non-linear time series models in empirical finance(1st Edition). Cambridge University Press, 2000. DOI: http://dx.doi.org/10.1017/CBO9780511754067

28.
R. R. Levary, D. Han, "Choosing a technological forecasting method", Industrial Management, Vol. 37, No. 1, pp. 14-18, 1995.

29.
H. Jaakkola, M. Gabbouj, Y. Neuvo, "Fundamentals of technology diffusion and mobile phone case study", Circuits Systems and Signal Processing, Vol. 17, No. 3, pp. 421-448, 1998. DOI: http://dx.doi.org/10.1007/BF01202301 crossref(new window)

30.
Wikipedia, "Michaelis-Menten kinetics", Available from: http://en.wikipedia.org/wiki/Michaelis-Menten_kinetics (accessed Feb, 4, 2016)

31.
A. M. Brown, "A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet", Computer Methods and Programs in Biomedicine, Vol. 65, Issue 3, pp. 191-200, 2001. DOI: http://dx.doi.org/10.1016/S0169-2607(00)00124-3 crossref(new window)

32.
A. Goldman, "Short product life cycles: implications for the marketing activities of small high-technology companies", R&D Management, Vol. 12, Issue 2, pp. 81-90, 1982. DOI: http://dx.doi.org/10.1111/j.1467-9310.1982.tb00487.x crossref(new window)

33.
N. Meade, T. Islam, "Technological Forecasting-Model Selection, Model Stability, and Combining Models", Management Science, Vol. 44, No. 8, pp. 1115-1130, 1998. DOI: http://dx.doi.org/10.1287/mnsc.44.8.1115 crossref(new window)

34.
J. P. Martino, Technological forecasting for decision making(3rd Edition). McGraw-Hill, 1992.

35.
J. Tidd, Gaining momentum: Managing the Diffusion of Innovations. Imperial College Press, 2010. DOI: http://dx.doi.org/10.1142/p625