JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Study on disinfection by-products formation according to kind of salt in on-site production
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Study on disinfection by-products formation according to kind of salt in on-site production
Min, Byungdae; Chung, Hyenmi; Kim, Taewook; Park, Juhyun;
  PDF(new window)
 Abstract
Although disinfection in drinking water treatment plants provides a safer water supply by inactivating pathogenic microorganisms, harmful disinfection by-products may be formed. In this study, the disinfectant, chlorine, was produced on-site from the electrolysis of salt (NaCl), and the by-products of the disinfection process, bromate and chlorate, were analyzed. The provisional guideline levels for bromate and chlorate in drinking water are and , in Korea, respectively. Bromide salt was detected at concentrations ranging from 6.0 ~ 622 mg/kg. Bromate and chlorate were detected at concentrations ranging from non-detect (ND) ~ 45.3mg/L and 40.5 ~ 1,202 mg/L, respectively. When comparing the bromide concentration in the salt to the bromate concentration in the chlorine produced by salt electrolysis, the correlation of bromide to bromate concentration was 0.870 (active chlorine concentration from on-site production: 0.6-0.8%, n=40). The correlation of bromate concentration in the chlorine produced to that in the treated water was 0.866.
 Keywords
On-site production of chlorine;Bromate;Bromide;Disinfection by-products;Liquid chlorine;
 Language
Korean
 Cited by
 References
1.
Cotruvo, J., Fawell, J. K., Giddings, M., Jackson, P., Magara, Y., Ohanian, E. (2005). Bromate in drinking water, World Health Organization.

2.
Elena, R., Petra, B., Danila, T., Paolo, L., Elisa, C., Gianni, A., Mark, J. N., guglielmina, F., Gabriella, A. (2012). Trihalomethanes, chlorite, chlorate in drinking water and risk of congenital anomalies: A population-based case-control study in Northern Italy, Environmental Research, 116, 66-73. crossref(new window)

3.
Fang, J. Y. and Shang, C. (2012). Bromate formation from bromide oxidation by the UV/persulfate process, Environmental Science and Technology, 46, 8976-8983. crossref(new window)

4.
Haag, W. R. and Hoigne, J. (1983). Ozonation of bromide-containing waters: kinetics of formation of hypobromous acid and bromate, Environmental Science and Technology, 17, 261-267. crossref(new window)

5.
Hosseini, S. G., Pourmortazavi, S. M., Gholivand, K. (2009). Spectrophotometric determination of chlorate ions in drinking water, Desalination, 245, 298-305. crossref(new window)

6.
Japan Salt Industry Association (2015). http://www.sijoho.com/s03/03.html (July 7, 2015).

7.
Korn, C., Andrews, R. C., Escobar, M. D. (2002). Development of chlorine dioxide-related by-product models for drinking water treatment, Water Research, 36, 330-342. crossref(new window)

8.
Ministry of Environment. (2014). Notification regarding drinking water quality monitoring operating items, Ministry of Environment Notification 2014-129.

9.
National Institute of Environmental Research. (2013). Standardization of chemicals and materials for water treatment and distribution, 11-1480523-001714-01.

10.
Pisarenko, A. N., Stanford, B. D., Quinones, O., Pacey, G. E., Gordon, G., Snyder, S. A. (2010). Rapid analysis of perchlorate, chlorate and bromate ion in concentrated sodium hypochlorite solutions, Analytica Chimica Acta, 659, 216-223. crossref(new window)

11.
Rafaed, J. G. V., Leite, M. V. O. D., Hierro, J. M. H., Alfageme, S. D. C., Hernandez, C. G. (2010). Occurrence of bromate, chlorite and chlorate in drinking waters disinfected with hypochlorite reagents, Science of the Total Environment, 408, 2616-2620. crossref(new window)

12.
Shane, A., Benjamin, D., Aleksey, N., Gilbert, G., Mari, A. (2009), Hypochlorite, American Water Works Association and Water Research Foundation,

13.
Stanford, B. D, Pisarenko, A. N., Snyder, S. A., Gordon, G. (2011). Perchlorate, bromate, and chlorate in hypochlorite solutions: Guidelines for utilities, American Water Works Association, 103, 1-13.

14.
Uyak, V. Toroz, I. (2007). Investigation of bromide ion effects on disinfection by-products formation and speciation in an Istanbul water supply, Journal of Hazardous Materials, 149, 445-451. crossref(new window)

15.
von Gunten, U. and Pinkernell, U. (2000). Ozonation of bromide-containing drinking waters: a delicate balance between disinfection and bromate formation, Water Science and Technology, 41, 53-59.

16.
Yasushi, N., Hitomi, N., Akihiro, K., Tomio, S., Hiroshi, I. (1999). Quality of common Salt, The Japan Society of Cookery Science, 32, 1-12.

17.
Yu, Y. L., Cai, Y., Chen, M. L, Wang, J. H. (2013). Development of a miniature dielectric barrier discharge-optical emission spectrometric system for bromide and bromate screening in environmental water samples, Analytica Chimica Acta, 1-7.

18.
Zhang, T., Chen, W., Ma, J., Qiang, Z. (2008). Minimizing bromate formation with cerium dioxide during ozonation of bromide-containing water, Water Research, 42, 3651-3658. crossref(new window)