JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Application of in situ Liquid Ferrate(VI) for 2-Bromophenol Removal
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Application of in situ Liquid Ferrate(VI) for 2-Bromophenol Removal
Laksono, Fajar Budi; Kim, Il-Kyu;
  PDF(new window)
 Abstract
The concern over the risk of environmental exposure to brominated phenols has been increased and has led the researchers to focus their attention on the study of bromophenol treatment. In this study, the effects of pH and ferrate(VI) dose on the degradation of 2-bromophenol were investigated. The results indicated that the oxidation of 2-bromophenol by liquid ferrate(VI) was found to be highly sensitive to the pH condition. Furthermore, the highest removal efficiency was observed at the neutral condition with the removal efficiency of 94.2%. In addition, experimental results showed that 2-bromophenol removal efficiency increased with increasing of ferrate dosage. Ferrate(VI) dose of 0.23 mM was sufficient to remove most of the 2-bromophenol with the efficiency of 99.73% and kapp value of . Seven compounds were identified as the intermediate products by the GC/MS analysis.
 Keywords
liquid ferrate(VI);2-bromophenol;oxidation;intermediates;
 Language
English
 Cited by
 References
1.
Al-Abduly, A., & Sharma, V. K. (2014). Oxidation of benzothiophene, dibenzothiophene, and methyl-dibenzothiophene by ferrate(VI). Journal of Hazardous Materials, 279, 296-301. http://doi.org/10.1016/j.jhazmat.2014.06.083 crossref(new window)

2.
Chengchun, J., Chen, L., & Shichao, W. (2008). Preparation of Potassium Ferrate by Wet Oxidation Method Using Waste Alkali: Purification and Reuse of Waste Alkali. In Ferrates (Vol. 985, pp. 5-94). American Chemical Society. http://doi.org/doi:10.1021/bk-2008-0985.ch005 crossref(new window)

3.
Dell'Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M., & Santoro, D. (2007). Disinfection by-products formation during wastewater disinfection with peracetic acid. Desalination, 215(1-3), 177-186. http://doi.org/10.1016/j.desal.2006.08.021 crossref(new window)

4.
Evans, C. S., & Dellinger, B. (2005). Mechanisms of dioxin formation from the high-temperature oxidation of 2-bromophenol. Environmental Science and Technology, 39(7), 2128-2134. http://doi.org/10.1021/es048461y crossref(new window)

5.
Graham, N., Jiang, C. C., Li, X. Z., Jiang, J. Q., & Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere, 56(10), 949-956. http://doi.org/10.1016/j.chemosphere.2004.04.060 crossref(new window)

6.
Huang, H., Sommerfeld, D., & Dunn…, B. C. (2001). Ferrate (VI) oxidation of aqueous phenol: kinetics and mechanism. The Journal of …, (Vi), 3536-3541. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jp0039621\npapers://d1ebd311-64c1-4c1d-9832-9631d7abf4b4/Paper/p11918 crossref(new window)

7.
Jeong, H. Y., & Kim, H. (2007). Transformation of Their Mackinawite ( FeS ) in the Presence, 41(22), 7736-7743. crossref(new window)

8.
Jiang, J. Q. (2007). Research progress in the use of ferrate(VI) for the environmental remediation. Journal of Hazardous Materials, 146(3), 617-623. http://doi.org/10.1016/j.jhazmat.2007.04.075 crossref(new window)

9.
Jiang, J.-Q. (2014). Advances in the development and application of ferrate(VI) for water and wastewater treatment. Journal of Chemical Technology & Biotechnology, 89(2), 165-177. http://doi.org/10.1002/jctb.4214 crossref(new window)

10.
Knight, V. K., Kerkhof, L. J., & Ha, M. M. (1999). Community analyses of sul¢dogenic 2-bromophenol- dehalogenating and phenol-degrading microbial consortia. FEMS Microbiology Ecology, 29, 137-147. crossref(new window)

11.
Lee, Y., Yoon, J., & Von Gunten, U. (2005). Kinetics of the oxidation of phenols and phenolic endocrine disruptors during water treatment with ferrate (Fe(VI)). Environmental Science and Technology, 39(22), 8978-8984. http://doi. org/10.1021/es051198w crossref(new window)

12.
Li, C., Li, X. Z., Graham, N., & Gao, N. Y. (2008). The aqueous degradation of bisphenol A and steroid estrogens by ferrate. Water Research, 42(1-2), 109-120. http://doi.org/10.1016/j.watres.2007.07.023 crossref(new window)

13.
Rhee, S. K., Fennell, D. E., Häggblom, M. M., & Kerkhof, L. J. (2003). Detection by PCR of reductive dehalogenase motifs in a sulfidogenic 2-bromophenol-degrading consortium enriched from estuarine sediment. FEMS Microbiology Ecology, 43(3), 317-324. http://doi.org/10.1016/S0168-6496(02)00435-X crossref(new window)

14.
Roberts, a L. (2000). Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe (0) Particles, 34(9), 1794-1805. http://doi.org/10.1021/es990884q crossref(new window)

15.
Rush, J. D., Zhao, Z., & Bielski, B. H. J. (1996). Reaction of Ferrate (VI)/Ferrate (V) with Hydrogen Peroxide and Superoxide Anion - a Stopped-Flow and Premix Pulse Radiolysis Study. Free Radical Research, 24(3), 187-198. http://doi.org/10.3109/10715769609088016 crossref(new window)

16.
Sharma, V. K. (2002). Potassium ferrate(VI): An environmentally friendly oxidant. Advances in Environmental Research, 6(2), 143-156. http://doi.org/10.1016/S1093-0191(01)00119-8 crossref(new window)

17.
Sharma, V. K. (2010). Oxidation of inorganic compounds by Ferrate (VI) and Ferrate(V): One-electron and two-electron transfer steps. Environmental Science and Technology, 44(13), 5148-5152. http://doi.org/10.1021/es1005187 crossref(new window)

18.
Sharma, V. K. (2011). Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: A review. Journal of Environmental Management, 92(4), 1051-1073. http://doi.org/10.1016/j.jenvman.2010.11.026 crossref(new window)

19.
Sharma, V. K. (2013). Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coordination Chemistry Reviews, 257(2), 495-510. http://doi.org/10.1016/j.ccr.2012.04.014 crossref(new window)

20.
Sharma, V. K., & Bielski, B. H. J. (1991). Reactivity of ferrate(VI) and ferrate(V) with amino acids. Inorganic Chemistry, 30(23), 4306-4310. http://doi.org/10.1021/ic00023a005 crossref(new window)

21.
Sharma, V. K., Burnett, C. R., & Millero, F. J. (2001). Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Physical Chemistry Chemical Physics, 3(11), 2059-2062. http://doi.org/10.1039/b101432n crossref(new window)

22.
Sharma, V. K., Rendon, R. a., Millero, F. J., & Vazquez, F. G. (2000). Oxidation of thioacetamide by ferrate(VI). Marine Chemistry, 70(1-3), 235-242. http://doi.org/10.1016/S0304-4203(00)00029-3 crossref(new window)

23.
Thompson, G. W., Ockerman, L. T., & Schreyer, J. M. (1951). Preparation and Purification of Potassium Ferrate. VI. Journal of the American Chemical Society, 73(3), 1379- 1381. http://doi.org/10.1021/ja01147a536 crossref(new window)

24.
Uhnakova, B., Petrickova, a., Biedermann, D., Homolka, L., Vejvoda, V., Bednar, P., … Martinkova, L. (2009). Biodegradation of brominated aromatics by cultures and laccase of Trametes versicolor. Chemosphere, 76(6), 826-832. http://doi.org/10.1016/j.chemosphere.2009.04.016 crossref(new window)

25.
Vetter, W., & Janussen, D. (2005). Halogenated natural products in five species of antarctic sponges: Compounds with POP-like properties? Environmental Science and Technology, 39(11), 3889-3895. http://doi.org/10.1021/es0484597 crossref(new window)

26.
White, D. a., & Franklin, G. S. (1998). A Preliminary Investigation into the Use of Sodium Ferrate in Water Treatment. Environmental Technology, 19(11), 1157-1161. http://doi. org/10.1080/09593331908616776 crossref(new window)

27.
Williams, D. H., & Riley, J. T. (1974). Preparation and alcohol oxidation studies of the ferrate(VI) ion, FeO42−. Inorganica Chimica Acta, 8(0), 177-183. http://doi. org/http://dx.doi.org/10.1016/S0020-1693(00)92612-4 crossref(new window)

28.
Yang, B., Ying, G. G., Zhang, L. J., Zhou, L. J., Liu, S., & Fang, Y. X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles. Water Research, 45(6), 2261-2269. http://doi.org/10.1016/ j.watres.2011.01.022 crossref(new window)

29.
Yang, B., Ying, G. G., Zhao, J. L., Liu, S., Zhou, L. J., & Chen, F. (2012). Removal of selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) during ferrate(VI) treatment of secondary wastewater effluents. Water Research, 46(7), 2194-2204. http://doi.org/10.1016/j.watres.2012.01.047 crossref(new window)

30.
Yang, B., Ying, G.-G., Chen, Z.-F., Zhao, J.-L., Peng, F.-Q., & Chen, X.-W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A. Water Research, 62(Vi), 211-219. http://doi.org/10. 1016/j.watres.2014.05.056 crossref(new window)

31.
YU, M., PARK, G., & KIM, H. (n.d.). Oxidation of Nonylphenol Using Ferrate. ACS Symposium Series, 985, 389-403. Retrieved from http://cat.inist.fr/?aModele=afficheN& cpsidt=20486426