Advanced SearchSearch Tips
Evaluation of FO membrane performance for each type of pre-treatment from WWTP secondary effluents
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Evaluation of FO membrane performance for each type of pre-treatment from WWTP secondary effluents
Jeong, Junwon; Kim, Jihoon; Kim, Geonyoub; Park, Junyoung; Kim, Hyungsoo; Kim, Hyungsook;
  PDF(new window)
The development of alternative water resources has emerged as an effective method for solving drought of water resources due to extreme weather and increase in water consumption. Recently, in Korea, there has been active research on reverse osmosis desalination technology, wastewater reuse using forward osmosis membranes, and the forward osmosis(FO)-reverse osmosis(RO) hybrid process combining these two technologies. In this study, the basic performance of FO membranes manufactured by three domestic and international manufactures such as Microfilter Co., Ltd., Toray Chemical Korea Inc., and Hydration Technologies Inc., were investigated for wastewater reuse. In addition, as an experiment to select feed solution, the selected membranes were operated 48 consecutive hours using three secondary effluents pretreated by the UF membrane with a pore size of and auto strainer with pore sizes of and as feed solution. Although there was not much difference in the operating performance. Thus, the treated water using the auto strainer was selected as feed solution applied to the assessment.
Desalination;Fouling;Forward osmosis;Membrane;Reverse osmosis;
 Cited by
Bamaga, O.A., Yokochi, A., Zabara, B., Babaqi, A.S. (2011). Hybrid FO/RO desalination system: Preliminary assessment of osmotic energy recovery and designs of new FO membrane module configurations, Desalination, 268, 163-169. crossref(new window)

Ge, Q., Su, J., Amy, G.L., Chung, T.S. (2012). Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Research, 46(4), 1318-1326. crossref(new window)

Han, G., Liang. C.Z., Chung. T.S., Weber. M., Staudt. C., Maletzko. C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater, Water Research, 91, 361-370. crossref(new window)

Hong, S.K., Lee, S.H., Kim, J.H., Kim, J.H., Ju, Y.G. (2011). Evolution of RO process for green future, KIC News, 14(6), 9-220.

Ling, M.M., Wang, K.Y., Chung, T.S. (2010). Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse. Industrial & Engineering Chemistry Research, 49(12), 5869-5876. crossref(new window)

McCutcheon, J.R., McGinnis, R.L., Elimelech, M. (2005). A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination, 174(1), 1-11. crossref(new window)

McCutcheon, J.R., McGinnis, R.L., Elimelech, M. (2006). Desalination by ammoniacarbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. Journal of Membrane Science, 278(1-2), 114-123. crossref(new window)

McGinnis, R.L., Elimelech, M. (2007). Energy requirements of ammonia-carbon diocide forward osmosis desalination, Desalination, 207(1-3), 370-382. crossref(new window)

Yoon, H.S. (2013). Characteristics of biofouling in forward osmosis process, Master's Thesis, Seoul National University, Seoul, republic of Korea.

Zaho, S., Zou, L., Tang, C.Y., Mulcahy, D. (2012). Recent developments in forward osmosis: Opportunities and challenges, Journal of Membrane Science, 396, 1-21. crossref(new window)

Zaviska, F., Chun, Y., Heran, M., Zou, L., Using FO as pre-treatment of RO for high scaling potential brackish water: Energy and performance optimisation, Journal of Membrane Science, 492, 430-438.