Advanced SearchSearch Tips
Optimization of TiCl4 Concentration and Initial pH for Phosphorus Removal in Synthetic Wastewater
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optimization of TiCl4 Concentration and Initial pH for Phosphorus Removal in Synthetic Wastewater
Shin, So-Yeun; Kim, Jong-Ho; Ahn, Johng-Hwa;
  PDF(new window)
This study experimentally determined the effect of titanium tetrachloride (TiCl4) concentration ([TiCl4]) (0.25-0.55 mM) and initial pH (3-11) on phosphorus (P) removal in synthetic wastewater (2 mg P/L). The P removal efficiency increased when [TiCl4] increased. The P removal efficiency showed a parabolic trend with an inflection point at pH 7. At the molar ratio of TiCl4 and P>6.2, the P removal efficiency was over 90% and the residual P concentration was less than 0.2 mg/L. Within the design boundaries, the complete P removal could be achieved at 7.0≤initial pH≤8.5 and 0.43≤[TiCl4]≤0.55 mM. The final pH was over 5.8 at initial pH≥7.7 and [TiCl4]≥0.35 mM. The results showed that TiCl4 was effective in P removal in water so that it could be an alternative chemical for P removal.
Coagulant;Initial pH;Optimization;Phosphorus;Titanium tetrachloride;
 Cited by
티타늄계열응집제를 이용한 하수 내 인 제거,신소연;김종호;안종화;

대한환경공학회지, 2016. vol.38. 8, pp.428-434 crossref(new window)
Phosphorus Removal from Municipal Wastewater Using Ti-based Coagulants, Journal of Korean Society of Environmental Engineers, 2016, 38, 8, 428  crossref(new windwow)
Effect of Calcium Ion and Initial pH on Phosphorus Removal using TiCl4 Coagulant, Journal of Korean Society of Environmental Engineers, 2017, 39, 3, 164  crossref(new windwow)
American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA, and WEF). (2012). Standard Method for the Exami­nation of Water & Wastewater, 22nd Edition, American Public Health Association, American Water Works Association and Water Environment Federation, Washington D. C., USA.

Chae, H. J. (2012). The Optimization of Culture Medium with Food Waste Compost for Oyster Mushroom using the Res­ponse Surface Analysis, Master's Thesis, Kangwon National University, Kangwon, Korea. [Korean Literature]

Choi, J. S. and Joo, H. J. (2011). Study on Change of Microbial Activity and Removal Efficiency of Phosphorus with Alum Injection in the Biological Process, Journal of Korea Society on Water Environment, 27(2), pp. 188-193. [Korean Literature]

Duan, J. and Gregory, J. (2003). Coagulation by Hydrolysing Metal Salt, Advances in Colloid and Interface Science, 100-102, pp. 475-502.

Hussain, S., Leeuwen, J., Chow, C. W. K., Aryal, R., Beecham, S., Duan, J., and Drikas, M. (2014). Comparison of the Coa­gulation Performance of Tetravalent Titanium and Zirconium Salts with Alum, Chemical Engineering Journal, 254, pp. 635-646. crossref(new window)

Kim, J. B., Park, H. J., Lee, K. W., Jo, A. R., Kim, M. W., Lee, Y. J., Park, S. M., Lee, K. Y., Shon, H. K., and Kim, J. H. (2013). Application of Ti-salt Coagulant and Sludge Recycling for Phosphorus Removal in Biologically Treated Sewage Effluent, Korean Journal Chemical Engineering Research, 51(2), pp. 257-262. [Korean Literature] crossref(new window)

Kim, J. H., Cho, D. L., Kim, G. D., Gao, B., and Shon, H. K. (2011). Titania Nanomaterials Produced from Ti-Salt Flocculated Sludge in Water Treatment, Catalysis Surveys from Asia, 15, pp. 117-126. crossref(new window)

Kim, S. G., Ryoo, J. I., and Ryu, B. S. (1998). Determination of Coagulant Dosage with Alkalinity and Colloidal Organis Matter, Journal of Korea Society on Water Environment, 14(2), pp.161-166. [Korean Literature]

Korea Water and Wastewater Works Association (KWWA). (2012). Sewerage Statistic, Korea Water and Wastewater Works Association. [Korean Literature]

Lee, S. B. (2008). Experiment Design Method of Example Using Minitab, Eretec, pp. 9. [Korean Literature]

Ministry of Environment (MOE). (2014a). Emission Standard of Water Pollution, Ministry of Environment. [Korean Literature]

Ministry of Environment (MOE). (2014b). Water Quality and Ecosystem Conservation Act, Ministry of Environment. [Korean Literature]

Mishnaevsky, Jr. L., Levashov, E., Valiev, R. Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’yov, A. V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’e, S., Dluhoš, L., Seefeldt, M., and Smolin, A. (2014). Nanostructured Titanium-based Materials for Medical Implants: Modeling and Development, Materials Science and Engin­eering, 81, pp. 1-19.

Muisa, N., Hoko, Z., and Chifamba, P. (2011). Impacts of Alum Residues from Morton Jaffray Water Works on Water Quality and Fish, Harare, Zimbabwe, Physics and Chemistry of the Earth, 36, pp. 853-864. crossref(new window)

Nayak, P. (2002). Aluminium : Impacts and Disease, Environ­mental Research, Section A 89, pp. 101-115. crossref(new window)

Rittmann, B. E. and McCarty, P. L. (2002). Environmental Biotechnology : Principles and Applications, McGraw-Hill.

Sawyer, C. L., McCarty, P. L., and Parkin, G. F. (2003). Chemi­stry for Environmental Engineering and Science, 5th edition, McGraw-Hill.

Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., Kim, G. J., Kim, J. B., and Kim, J. H. (2007). Preparation of Titanium Dioxide(TiO2) from Sludge Produced by Titanium Tetra­chloride (TiCl4) Flocculation of Wastewater, Environmental Science & Technology, 41(4), pp. 1372-1377. crossref(new window)

Sun, Y., Zhou, G., Xiong, X, Guan, X., Li, L., and Bao, H. (2013). Enhanced Arsenite Removal from Water by Ti(SO4)2 Coagulation, Water Research, 47, pp. 4340-4348. crossref(new window)

Upton, W. V. and Buswell, A. M. (1937). Titanium Salts in Water Purification, Industrial & Engineering Chemistry Research, 29(8), pp. 870-871. crossref(new window)

Weon, S. Y. and Lee, S. I. (2004). Removal Nitrogen and Phosphorus from Wastewater using Natural Zeolite and Iron Oxide, Journal of Korea Society on Water Environment, 20(2), pp. 104-109. [Korean Literature]

Zhao, Y. X., Gao, B. Y., Shon, H. K., Cao, B. C., and Kim, J. H. (2011). Coagulation Characteristics of Titanium (Ti) Salt Coagulant compared with Aluminum (Al) and Iron (Fe) Salts, Journal of Hazardous Materials, 185, pp. 1536-1542. crossref(new window)

Zhao, Y. X., Gao, B. Y., Zhang, G. Z., Phuntsho, S., and Shon, H. K. (2014). Coagulation by Titanium Tetrachloride for Fulvic acid Removal: Factors influencing Coagulation Effi­ciency and Floc Characteristics, Desalination, 335, pp. 70-77. crossref(new window)

Zhou, Y., Xing, X. H., Liu, Z., Cui, L., Yu, A., Feng, Q., and Yang, H. (2008). Enhanced Coagulation of Ferric Chloride aided by Tannic Acid for Phosphorus Removal from Waste­water, Chemosphere, 72, pp. 290-298. crossref(new window)