Advanced SearchSearch Tips
A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Comparative Study on Microalgae Recovery Rates in Response to Different Low Cost Bio-flocculant Applications
Choi, Hee-Jeong;
  PDF(new window)
In this study, low cost bio-flocculants, chitosan, cationic starch and Mg-sericite, were used as a flocculant to harvest freshwater microalgae, Chlorella vulgaris. Chitosan, cationic starch and Mg-sericite separated successfully >98% of C. vulgaris at following optimal parameters: 90 mg/L chitosan at pH 6-7, 70 mg/L cationic starch at pH 9-10 and 50 mg/L Mg-sericite at pH 4-5. A relatively high correlation coefficient (R2) of 0.9993 for chitosan, 0.9971 for catonic starch and 0.9924 for Mg-sericite was obtained. The investigated flocculants amount increased linearly with increasing the microalgae amount. The biopolymer, Mg-sericite, was more effective than that of other investigated flocculants. These results indicated that a bio-flocculants, chitosan, cationic starch and Mg-sericite, could prove to be an effective flocculant for economical production of microalgae biomass. In addition, Mg-sericite was more effective comparing to the other investigated flocculants.
Cationic starch;Chitosan;Flocculation;Harvesting;Microalgae;Mg-sericite;
 Cited by
당화된 도토리의 전분이 미세조류 바이오매스 증식과 바이오오일 함량에 미치는 영향,최희정;이정민;

한국물환경학회지, 2016. vol.32. 2, pp.197-204 crossref(new window)
Application of Saccharified Acorn-starch for Biomass and Lipid Accumulation of Microalgae, Journal of Korean Society on Water Environment, 2016, 32, 2, 197  crossref(new windwow)
Application of methyl-esterified sericite for harvesting microalgae species, Journal of Environmental Chemical Engineering, 2016, 4, 3, 3593  crossref(new windwow)
Ahmad, A. L., Mat Yasin, N. H., Derek, C. J. C., and Lim, J. K. (2011). Optimization of Microalgae Coagulation Process using Chitosan, Chemical Engineering Journal, 173, pp. 879­-882. crossref(new window)

American Public Health Association (APHA). (2012). Standard Methods for the Examination of Water and Waste Water, 22th ed., American Public Health Association Publication, Washington, D.C.

Barros, A. I., Gonçalves, A. L., Simões, M., and Pires, J. C. M. (2015). Harvesting Techniques Applied to Microalgae: A Re­view, Renewable and Sustainable Energy Reviews, 41, pp. 1489-­1500. crossref(new window)

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J., and Chang, J. S. (2011). Cultivation, Photobioreactor Design and Harvesting of Microalgal for Biodiesel Production: A critical Review, Bioresource Technology, 102, pp. 71-81. crossref(new window)

Chisti, Y. (2007). Biodiesel from Microalgae, Biotechnology Advances, 25(3), pp. 294-306. crossref(new window)

Choi, H. J. (2014). Comparison of Biomass and Oil Content of Chlorella sp., Nannochloris sp., and Botryococcus braunii in the Mixotrophic Conditions using Glycerol, Journal of Korean Society on Water Environment, 30(5), pp. 469-476. [Korean Literature] crossref(new window)

Choi, H. J. (2015). Optimization for Microalgae Harvesting using Mg-Sericite Flocculant, Journal of Korean Society on Water Environment, 31(3), pp. 328-333. [Korean Literature] crossref(new window)

Danquah, M. K., Ang, L., Uduman, N., Moheimani, N., and Forde, G. M. (2009). Dewatering of Microalgae Culture for Biodiesel Production: Exploring Polymer Flocculation and Tangential Flow Filtration, Journal of Chemical Technology and Biotechnology, 84, pp. 1078-1083. crossref(new window)

Dassey, A. J. and Theegala, C. S. (2013). Harvesting Economics and Strategies using Centrifugation for Cost Effective Sepa­ration of Microalgae Cells for Biodiesel Application, Biore­sources Technology, 128, pp. 214-215.

Farooq, W., Lee, Y. C., Han, J. I., Darpito, C. H., Choi, M., and Yang, J. W. (2013). Efficient Microalgae Harvesting by Organo-building Blocks of Nanoclays, Green Chemistry, 15, pp. 749-755. crossref(new window)

Gerde, J. A., Yao, L., Wen, Z., and Wang, T. (2014). Microalgae Flocculation: Impact of Flocculant Type, Algae Species and Cell Concentration, Algal Research, 3, pp. 30-35. crossref(new window)

Gouveia, L. and Oliveira, A. C. (2009). Microalgae as a Raw Material for Biofuels Production, Journal of Industrial Microbiology and Biotechnolgy, 36, pp. 269-274. crossref(new window)

Habib, M. A. B. and Parvin, M. (2008). A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish, In: Huntington, T. C. and Hasan, M. R., editors, FAO fisheries and aquaculture circular No. 1034, Rome: Food and Agriculture Organization of the United Nations.

Hansel, P. A., Riefler, R. G., and Stuart, B. (2014). Efficient Flocculant of Microalgae for Biodiesel Production using Cationic Starch, Algal Research, 5, pp. 133-139. crossref(new window)

Huang, G. H., Chen, F., Wei, D., Zhang, X. W., and Chen, G. (2010). Biodiesel Production by Microalgal Biotechnology, Applied Energy, 87, pp. 38-46. crossref(new window)

Intional Energy Agency (IEA). (2014). World Energy Outlook 2014, IEA, London.

Lee, W. J., Han, B. K., Park, I. H., Park, S. H., Oh, H. I., and Jo, D. H. (1995). Effects of Reaction Temperature, Time and Particle Size on the Physicochemical Properties of Chitosans, Korean Journal of Food Science and Technology, 27(6), pp. 997-1002. [Korean Literature]

Lee, A., Lewis, D., and Ashman, P. (2009). Microbial Floccu­lation, a Potentially Low-cost Harvesting Technique for Marine Microalgae for Production of Biodiesel, Journal of Applied Phycology, 21, pp. 559-567. crossref(new window)

Lee, Y. C., Kim, B., Farooq, W., Chung, J., Han, J. I., Shin, H. J., Jeong, S. H., Park, J. Y., Lee, J. S., and Oh, Y. K. (2013) Harvesting of oleaginous Chlorella sp. by organoclays, Bio­resource Technology, 132, pp. 440-445. crossref(new window)

Liu, D., Wang, P., Wei, G., Dong, W., and Hui, F. (2013). Removal of Algal Blooms from Freshwater by the Coagu­lation- Magnetic Separation Method, Environmental Science and Pollution Research International, 20, pp. 60-65. crossref(new window)

Letelier-Gordo, C. O., Holdt, S. L., Francisci, D. D., Karakashev, D. B., and Angelidaki, I. (2014). Effective Harvesting of the Microalgae Chlorella protothecoides via Bioflocculation with Cationic Starch, Bioresource Technology, 167, pp. 214-218. crossref(new window)

Papazi, A., Makridis, P., and Divanach, P. (2010). Chlorella minutissima using cell coagulants, Journal of Applied Phycology, 22, pp. 349-355. crossref(new window)

Rashid, N., Rehman, S. U., and Han, J. I. (2013). Rapid Harves­ting of Freshwater Microalgae using Chitosan, Process Biochemistry, 48, pp. 1107-1110. crossref(new window)

Reddy, D. H. K., Lee, S. M., and Kim, J. O. (2013) A Review on Emerging Applications of Natural sericite and Its Compo­sites, World Applied Science Journal, 27(11), pp. 1514-1523.

Salim, S., Bosma, R., Vermue, M. H., and Wijffels, R. H. (2011). Harvesting of Microalgae by Bioflocculation, Journal of Applied Phycology, 23, pp. 849-855. crossref(new window)

Semerjian, L. and Ayoub, G. M. (2003). High-pH-Magnesium Coagulation-Flocculation in Wastewater Treatment, Advances in Environmental Research, 7(2), pp. 389-403. crossref(new window)

Show, K. Y. and Lee, D. J. (2014). Algal Biomass Harvesting, In: pandey A., Lee, D. J., Chisti, Y., and Soccol, C. R., editors, Biofuels from Algae, Burlington, Elsevier, pp. 85-110.

Şirin, S., Trobajo, R., Ibanez, C., and Salvado, J..irin, S., Trobajo, R., Ibanez, C., and Salvadó, J. (2012). Har­vesting the Microalgae Phaeodactylum tricornutum with Polyaluminum Chloride, Aluminium sulphate, Chitosan and Alkalinity-induced Flocculation, Journal of Applied Phyco­logy, 24, pp. 1067-1080. crossref(new window)

Vandamme, D., Foubert, I., and Muylaert, K. (2013). Flocculation as a Low-cost Method for Harvesting Microalgae for Bulk Biomass Production, Trends Biotechnology, 31, pp. 233-239. crossref(new window)

Vandamme, D., Foubert, I., Fraeye, I., Meesschaert, B., and Muylaert, K. (2012). Flocculation of Chlorella vulgaris induces by High pH: Role of Magnesium and Calcium and Pracial Implications, Bioresources Technology, 105, pp. 114-119.