JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Photoreduction of Carbon Dioxide using Graphene Oxide-Titanium Oxide Composite
Lee, Myung-Kyu; Jang, Jun-Won; Park, Sung-Jik; Park, Jae-Woo;
  PDF(new window)
 Abstract
In this study, we synthesized a combination of graphene oxide (GO) and titanium dioxide (TiO2) and confirm that GO can be used for CO2 photoreduction. TiO2 exhibited highly efficient combination with other conventional electric charges generated by these paration phenomenon for suppression of hole-electron recombination. This improved the efficiency of CO2 photoreduction. The synthetic form of GO-TiO2 used in this study was agraphene sheet surrounded by TiO2 powder. Efficiency and stability were enhanced by combination of GO and TiO2. In a CO2 photoreduction experiment, the highest CO conversion rate was 0.652 μmol/g·h in GO10-TiO2 (2.3-fold that of pure TiO2) and the highest CH4 production rate was 0.037 μmol/g·h in GO0.1-TiO2 (2.4-fold that of pure TiO2). GO enhances photocatalytic efficiency by functioning as a support and absorbent, and enabling charge separation. With increasing GO concentration, the CH4 level decreases to~45% due to decreased transfer of electrons. In this study, TiO2 together with GO yielded a different result than the normal doping effect and selective CO2 photoreduction.
 Keywords
CO2;Graphene oxide;Photocatalytic reduction;TiO2;
 Language
Korean
 Cited by
 References
1.
Gao, P., Li, A., Sun, D. D., and Ng, W. J. (2014). Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2, Journal of Hazardous Materials, 279, pp. 96-104. crossref(new window)

2.
Garcia-Gallastegui, A., Iruretagoyena, D., Gouvea, M., Mokhtar, A. Asiri, M., Basahel, S. N., Al-Thabaiti, S. A., Alyoubi, A. O., Chadwick, D., and Shaffer, M. S. (2012). Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO2 Adsorption Capacity, Chemistry of Materials, 24(23), pp. 4531-4539. crossref(new window)

3.
Gaya, U. I. and Abdullah, A. H., (2008). Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: a Review of Fundamentals, Progress and Problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), pp. 1-12. crossref(new window)

4.
Hsu, H. C., Shown, I., Wei, H. Y., Chang, Y. C., Du, H. Y., Lin, Y. G., Tseng, C. A., Wang, C. H., Chen, L. C., and Lin, Y. C. (2012). Graphene Oxide as a Promising Photocatalyst for CO2 to Methanol Conversion, Nanoscale, 5(1), pp. 262-268. crossref(new window)

5.
Hu, B., Guild, C., and Suib, S. L. (2013). Thermal, Electrochemica and Photochemical Conversion of CO2 to Fuels and Value-added Products, Journal of CO2 Utilization, 1, pp. 18-27. crossref(new window)

6.
Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., and Tang, H. (2011). TiO2 Nanoparticles Assembled on Graphene Oxide Nanosheets with High Photocatalytic Activity for Removal of Pollutants, Carbon, 49(8), pp. 2693-2701. crossref(new window)

7.
Kim, C. H., Kim, B. H., and Yang, K. S. (2012). TiO2 Nanoparticles Loaded on Graphene/Carbon Composite Nanofibers by Electrospinning for Increased Photocatalysis, Carbon, 50(7), pp. 2472-2481. crossref(new window)

8.
Kim, L. J., Jang, J. W., and Park, J. W. (2014). Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst, Applied Catalysis B: Environmental, 147, pp. 973-979. crossref(new window)

9.
Kočí, K., Matějů, K., Obalová, L., Krejčíková, S., Lacný, Z., Plachá, D., and Šolcová, O. (2010). Effect of Silver Doping on the TiO2 for Photocatalytic Reduction of CO2, Applied Catalysis B: Environmental, 96(3), pp. 239-244. crossref(new window)

10.
Kudin, K. N., Ozbas, B., Schniepp, H. C., Prud'Homme, R. K., Aksay, I. A., and Car, R. (2008). Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets, Nano Letters, 8(1), pp. 36-41. crossref(new window)

11.
Lee, M., Amaratunga, P., Kim, J., and Lee, D. (2010). TiO2 Nanoparticle Photocatalysts Modified with Monolayer-Protected Gold Clusters, The Journal of Physical Chemistry C, 114(43), pp. 18366-18371. crossref(new window)

12.
Liu, G., Hoivik, N., Wang, K., and Jakobsen, H. (2012). Engineering TiO2 Nanomaterials for CO2 Conversion/Solar Fuels, Solar Energy Materials and Solar Cells, 105, pp. 53-68. crossref(new window)

13.
Liu, L., Zhao, H., Andino, J. M., and Li, Y. (2012). Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry, Acs Catalysis, 2(8), pp. 1817-1828. crossref(new window)

14.
Nasution, H. W., Purnama, E., Kosela, S., and Gunlazuardi, J. (2005). Photocatalytic Reduction of CO2 on Copper-Doped Titania Catalysts Prepared by Improved-Impregnation Method, Catalysis Communications, 6(5), pp. 313-319. crossref(new window)

15.
Olivier, J. G., Janssens-Maenhout, G., Muntean, M., and Peter, J. A. H. W. (2014). Trends in Global CO2 Emissions: 2014 Report, Hague: PBL Netherlands Environmental Assessment Agency, pp. 10-11.

16.
Park, S. J. (2013). History of Graphene Oxide and Future Direction, Korean Industrial Chemistry News, 16(3), pp. 1-5. [Korean Literature]

17.
Perera, S. D., Mariano, R. G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus Jr, K. J. (2012). Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites with Enhanced Photocatalytic Activity, Acs Catalysis, 2(6), pp. 949-956. crossref(new window)

18.
Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., and Arakawa, H. (2000). Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain, Chemical Communications, (13), pp. 1173-1174. crossref(new window)

19.
Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., and Lin, Y. (2010). Graphene Based Electrochemical Sensors and Biosensors: a Review, Electroanalysis, 22(10), pp. 1027-1036. crossref(new window)

20.
Song, C. (2006). Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy, Catalysis, Adsorption and Chemical Processing, Catalysis Today, 115(1-4), pp. 2-32. crossref(new window)

21.
Spinner, N. S., Vega, J. A., and Mustain, W. E. (2012). Recent Progress in the Electrochemical Conversion and Utilization of CO2, Catalysis Science and Technology, 2(1), pp. 19-28. crossref(new window)

22.
Tan, L. L., Ong, W. J., Chai, S. P., and Mohamed, A. R. (2013). Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Convertsion of Carbon Eioxide, Nanoscale Research Letters, 8(1), pp. 1-9. crossref(new window)

23.
Upadhye, A. A., Ro, I., Zeng, X., Kim, H. J., Tejedor, I., Anderson, M. A., Dumesic, J. A., and Huber, G. W. (2015). Plasmon-Enhanced Reverse Water Gas Shift Reaction over Oxide Supported Au Catalysts, Catalysis Science & Technology.

24.
Williams, G., Seger, B., and Kamat, P. V. (2008). TiO2-Graphene Nanocomposites, UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS nano, 2(7), pp. 1487-1491. crossref(new window)

25.
Yu, C., Fan, Q., Xie, Y., Chen, J., and Jimmy, C. Y. (2012). Sonochemical Fabrication of Novel Square-Shaped F Doped TiO2 Nanocrystals with Enhanced Performance in Photocatalytic Degradation of Phenol, Journal of Hazardous Materials, 237, pp. 38-45. crossref(new window)

26.
Yui, T., Kan, A., Saitoh, C., Koike, K., Ibusuki, T., and Ishitani, O. (2011). Photochemical Reduction of CO2 Using TiO2: Effects of Organic Adsorbates on TiO2 and Deposition of Pd onto TiO2, ACS Applied Materials & Interfaces, 3(7), pp. 2594-2600. crossref(new window)

27.
Zhao, H., Liu, L., Andino, J. M., and Li, Y. (2013). Bicrystalline TiO2 with Controllable Anatase Brookite Phase Content for Enhanced CO2 Photoreduction to Fuels, Journal of Materials Chemistry A, 1(28), pp. 8209-8216. crossref(new window)