JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function
Chun, Si-Young; Kim, Yong-Tak; Kwon, Hyun-Han;
  PDF(new window)
 Abstract
This study applied a probabilistic-based hidden Markov model (HMM) to better characterize drought patterns. In addition, a copula-based bivariate drought frequency analysis was employed to further investigate return periods of the current drought condition in year 2015. The obtained results revealed that western Kangwon area was generally more vulnerable to drought risk than eastern Kangwon area using the 40-year data. Imjin-river watershed including Cheorwon area was the most vulnerable area in terms of severe drought events. Four stations in Han-river watershed showed a joint return period exceeding 1,000 years associated with the drought duration and severity in 2014-2015. Especially, current drought status in Northern Han-river and Imjin-river watershed is most severe drought exceeding 100-year return period.
 Keywords
copula;drought;drought frequency;duration;hidden Markov model;severity;
 Language
Korean
 Cited by
 References
1.
Bonaccorso, B., Bordi, I., Cancelliere, A., Ross, G., and Sutera, A. (2003). "Spatial Variability of Drought: An Analysis of the SPI in Sicily." Water Resources Management, Vol. 17, No. 4, pp. 273-296. crossref(new window)

2.
Dracup, J.A., Lee, K.S., and Paulson, E.G. (1980). "On the Statistical Characteristics of Drought Events." Water Resources Research, Vol. 16, No. 2, pp. 289- 296. crossref(new window)

3.
Kao, S.C., and Govindaraju, R.S. (2007). "A bivariate frequency analysis of extreme rainfall with implications for design." Journal of Geophysical Research, Vol. 112, Issue. D13, pp. 1-15, doi:10.1029/2007JD 008522.

4.
Kao, S.C., and Govindaraju, R.S. (2010). "A copula-based joint deficit index for droughts." Journal of Hydrology, Vol. 380, pp. 121-134. crossref(new window)

5.
Kim, T.W., Valdes, J.B., and Yoo, C.S. (2003). "Nonparametric Approach for Estimating Return Periods of Droughts in Arid Regions." Journal of Hydrologic Engineering, Vol. 8, pp. 237-246. crossref(new window)

6.
Kim, T.W., Valdes, J.B., ASCE, F., and Yoo, C.S. (2006). "Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index." Journal of Hydrologic Engineering, Vol. 11, pp. 134-143. crossref(new window)

7.
Kwak, J.W., Kim, Y.S., Lee, J.S., and Kim, H.S. (2012). "Analysis of Drought Characteristics Using Copula Theory." Journal of the Korean Civil Engineering, pp. 1762-1771, doi: 10.1061/9780784412312.175.

8.
Kwon, H.H., Kim, T.J., Hwamg, S.H., and Kim, T.W. (2013). "Development of Daily Rainfall Simulation Model Based on Homogeneous Hidden Markov Chain." Journal of the Korean Society of Civil Engineers, Vol. 33, No. 5, pp. 1861-1870. crossref(new window)

9.
Lee, J.H., Chung, G.H., and Kim, T.W. (2009). "Evaluation of Flood Severity Using Bivariate Gumbel Mixed Model." J. Korea Water Resources Association, Vol. 42, No. 9, pp. 725-736. crossref(new window)

10.
Loaiciga, H.A., and Leipnik, R.B. (1996). "Stochastic renewal model of Iow-fow streamflow sequences." Stochastic Hydrology and Hydraulics, Vol. 10, pp. 65- 85. crossref(new window)

11.
Mirakbari, M., and Ganji, A. (2010). "Reliability analysis of a rangeland system: the application of Profust theory." Stoch Environ Res Risk Assess, Vol. 24, pp. 399-409, doi:10.1007/s00477-009-0329-8 crossref(new window)

12.
Mishra, A.K., and Desai, V.R. (2005). "Drought forecasting using stochastic models." Stoch Environ Res Risk Assess, Vol. 19, pp. 326-339, doi:10.1007/s00477-005- 0238-4 crossref(new window)

13.
Salas, D., Chauvin, F., Deque, M., Douville, H., Gueremy, J.F., Marquet, P., Planton, S., Royer, J.F., and Tyteca, S. (2005). "Description and validation of the CNRMCM3 global coupled model." Climate Dynamics, Vol. 103, pp. 1-36.

14.
Sklar, A. (1959). "Fonctions de repartition a n dimensions et leurs marges." Universite Paris, Vol, 8, pp. 229-231.

15.
Wilhite, D.A., and Glantzb, M.H. (1985). "Understanding: the Drought Phenomenon: The Role of Definitions." Water International, Vol. 10, lssue. 3, pp. 111-120. crossref(new window)

16.
Yevjevich, V. (1967). "An objective approach to definitions and investigations of continental hydrologic droughts." Hydrrology papers colorado state university fort collins, colorado, No. 23.

17.
Yoo, J.Y., Kwon, H.H., Kim, T.W., and Lee, S.O. (2014). "Probabilistic Assessment of Drought Characteristics based on Homogeneous Hidden Markov Model." Journal of the Korean Society of Civil Engineers, Vol. 34, No. 1, pp. 145-153. crossref(new window)

18.
Yoo, J.Y., Kwon, H.H., So, B.J., Rajagopalan, B., and Kim, T.W. (2015). "Identifying the role of typhoons as drought busters in South Korea based on hidden Markov chain models." Geophysical Research Letters. Research Letter, Vol. 42, pp. 2797-2804, doi: 10.1002/ 2015GL063753. crossref(new window)

19.
Yue, S. (2001). "A bivariate gamma distribution for use in multivariate flood frequency analysis." Hydrological Processes, Vol. 15, No. 6, pp. 1033-1045. crossref(new window)

20.
Zhang, L., and Singh, V.P. (2006). "Bivariate Flood Frequency Analysis Using the Copula Method." Journal of Hydrologic Engineering, Vol. 11, No. 2, pp. 150-164. crossref(new window)