Advanced SearchSearch Tips
Augmenting Plant Immune Responses and Biological Control by Microbial Determinants
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Research in Plant Disease
  • Volume 21, Issue 3,  2015, pp.161-179
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/RPD.2015.21.3.161
 Title & Authors
Augmenting Plant Immune Responses and Biological Control by Microbial Determinants
Lee, Sang Moo; Chung, Joon-hui; Ryu, Choong-Min;
  PDF(new window)
Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.
Biological control;Induced resistance;Microbial determinant;PGPR;Plant immunity;
 Cited by
Are Bacterial Volatile Compounds Poisonous Odors to a Fungal Pathogen Botrytis cinerea, Alarm Signals to Arabidopsis Seedlings for Eliciting Induced Resistance, or Both?, Frontiers in Microbiology, 2016, 7  crossref(new windwow)
Agrios, G. 2004. Plant pathology. 5th ed., pp. 159-160, 21, 240-241. Elsevier Academic Press, Burlington.

Ahmed, S. A., Sanchez, C. P. and Candela, M. E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106: 817-824. crossref(new window)

Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515. crossref(new window)

Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143: 838-848.

Akira, S. and Takeda, K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. crossref(new window)

An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53: 412-428. crossref(new window)

Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P. and Singh, K. B. 2010. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 154: 861-873. crossref(new window)

Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.

Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973-979. crossref(new window)

Ayers, A. R., Ebel, J., Finelli, F., Berger, N. and Albersheim, P. 1976. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57: 751-759. crossref(new window)

Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxidefueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29. crossref(new window)

Bakker, P. A., Pieterse, C. M. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243. crossref(new window)

Balbi, V. and Devoto, A. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177: 301-318.

Bashan, B. and Cohen, Y. 1982. Tobacco necrosis virus induces systemic resistance in cucumbers. Physiol. Plant Pathol. 23: 137-144.

Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268: 14724-14731.

Bauer, D. W., Wei, Z. M., Beer, S. V. and Collmer, A. 1995. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact. 8: 484-491. crossref(new window)

Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J. Biol. Chem. 269: 17931-17938.

Bazzini, A. A., Asurmendi, S., Hopp, H. E. and Beachy, R. N. 2006. Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J. Gen. Virol. 87: 1005-1012. crossref(new window)

Benhamou, N., Garand, C. and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68: 4044-4060. crossref(new window)

Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Multigenic and Induced Systemic Resistance in Plants, eds. by S. Tuzun and E. Bent, pp. 9-22. Springer Science and Business Media, Inc.

Bentley, R. and Meganathan, R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46: 241-280.

Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214. crossref(new window)

Boller, T. and Felix, G. 1996. Olfaction in plants: Specific perception of common microbial molecules. In: Biology of Plant-Microbe Interactions, eds. by G. Stacey, B. Mullin, and P. M. Gresshof, pp. 1-9. Inter. Natl Soc. Mol. Plant-Microbe Interac., St. Paul.

Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23: 1245-1247. crossref(new window)

Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A. and Mundy, J. 2005. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol. 138: 1037-1045. crossref(new window)

Brodhun, F., Cristobal-Sarramian, A., Zabel, S., Newie, J., Hamberg, M. and Feussner, I. 2013. An iron 13S-lipoxygenase with an alphalinolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8: e64919. crossref(new window)

Broekaert, W. F., Delaure, S. L., De Bolle, M. F. and Cammue, B. P. 2006. The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393-416. crossref(new window)

Brooker, R. J., Widmaier, E. P., Graham, L. E. and Stiling, P. D. 2008. Biology 1st ed. McGraw-Hill.

Campos-Soriano, L., Garcia-Martinez, J. and San Segundo, B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 13: 579-592. crossref(new window)

Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y. and Collmer, A. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211-5217.

Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500. crossref(new window)

Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814. crossref(new window)

Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., B. H. Cho, Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075. crossref(new window)

Choi, D., Maeng, J. M., Ding, J. L. and Cha, W. S. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378.

Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892. crossref(new window)

Chung, J. H., Song, G. C. and Ryu, C. M. 2015. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. DOI 10.1007/s11103-015-0344-8 crossref(new window)

Cole, S. J., Yoon, A. J., Faull, K. F. and Diener, A. C. 2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine-and leucine-conjugated jasmonates. Mol. Plant Pathol. 15: 589-600. crossref(new window)

Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071. crossref(new window)

Conti, G. G., Pianezzola, A., Arnoldi, A., Violini, G. and Maffi, D. 1990. Preinoculation with tobacco necrosis virus enhances perosidase active and lignification. J. Phytopathol. 128: 191-202. crossref(new window)

Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S. and Gianinazzipearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant-Microbe Interact. 11: 1017-1028. crossref(new window)

Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653. crossref(new window)

Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189. crossref(new window)

Coutte, R. H. A. and Wagih, E. E. 1983. Induced resistance to virus infection. Phtopathologische Zeitschrift 107: 57-69.

Coventry, H. S. and Dubery, I. A. 2001 Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 58: 149-158. crossref(new window)

Cui, Y., Madi, L., Mukherjee, A., Dumenyo, C. K. and Chatterjee, A. K. 1996. The RsmA-mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact. 9: 565-573. crossref(new window)

Culver, J. N. 1996. Tobamovirus cross protection using a potexvirus vector. Virology 226: 228-235. crossref(new window)

Demain, A. L. 1972. Riboflavin oversynthesis. Annu. Rev. Microbiol. 26: 369-388. crossref(new window)

De Meyer, G. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 588-593. crossref(new window)

De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Metraux, J. P. and Hofte, M. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12: 450-458. crossref(new window)

De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104: 279-286. crossref(new window)

Dempsey, D. A. and Klessig, D. F. 2012. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545. crossref(new window)

De Roman, M., Fernandez, I., Wyatt, T., Sahrawy, M., Heil, M. and Pozo, M. J. 2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99: 36-45. crossref(new window)

Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47: 1530-1540. crossref(new window)

De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactinmediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148: 1996-2012. crossref(new window)

De Vleesschauwer, D., Chernin, L. and Hofte, M. M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 9: 9. crossref(new window)

Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741-1746.

Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.

Dong, H., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215. crossref(new window)

Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811. crossref(new window)

Dow, M., Newman, M. A. and von Roepenack, E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38: 241-261. crossref(new window)

D'Alessandro, A., Amelio, I., Berkers, C. R., Antonov, A., Vousden, K. H., Melino, G. and Zolla, L. 2014. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5: 7722-7733. crossref(new window)

Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125: 369-377. crossref(new window)

Engelhardt, S., Lee, J., Gabler, Y., Kemmerling, B., Haapalainen, M. L., Li, C. M., Wei, Z., Keller, H., Joosten, M., Taira, S. and Nurnberger, T. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J. 57: 706-717. crossref(new window)

Erbs, G. and Newman, M. A. 2003. The role of lipopolysaccharides in induction of plant defence responses. Mol. Plant Pathol. 4: 421-425. crossref(new window)

Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268. crossref(new window)

Farag, M. A., Zhang, H. and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne aignals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39: 1007-1018. crossref(new window)

Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276. crossref(new window)

Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390. crossref(new window)

Fletcher, J. T. 1978. The use of avirulent virus strain to protect plants against the effects of virulent strains. Ann. Appl. Biol. 110-114.

Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140. crossref(new window)

Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. and Nishimura, M. 2012. Surface alpha-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 8: e1002882. crossref(new window)

Fukuda, H., Ogawa, T. and Tanase, S. 1993. Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275-306. crossref(new window)

Gerber, I. B. and Dubery, I. A. 2004. Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia. Phytochemistry 65: 2957-2966. crossref(new window)

Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011. crossref(new window)

Granado, J., Felix, G. and Boller, T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol. 107: 485-490.

Guimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E. J., Docquier, M., Descombes, P., Briggs, S. P. and Paszkowski, U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA. 102: 8066-8070. crossref(new window)

Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319. crossref(new window)

Hammerschmidt, R. and Yang-Cashman, P. 1995. Induced resistance in cucurbits. In: Induced Resistance to Disease in Plants, eds. by R. Hammerschmidt and J. Kuc, pp. 63-85. Kluwer Academic Publishers, Dordrecht.

Hammerschmidt, R. and Nicholson, R. L. 1999. A survey of plant defense responses to pathogens. In: Induced Plant Defenses Against Pathogens and Herbivores, eds. by A. Agrawal and S. Tuzun, APS Press, St Paul, MN.

Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacSdependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19: 924-930. crossref(new window)

Harman, G. E., Petzoldt, R., Comis, A. and Chen, J. 2004a. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94: 147-153. crossref(new window)

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004b. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56. crossref(new window)

Harrison, M. J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361-389. crossref(new window)

Hause, B., Maier, W., Miersch, O., Kramell, R. and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130: 1213-1220. crossref(new window)

Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184-196. crossref(new window)

Hause, B., Mrosk, C., Isayenkov, S. and Strack, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110. crossref(new window)

He, S. Y., Huang, H. C. and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. crossref(new window)

Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346. crossref(new window)

Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88: 645-654. crossref(new window)

Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E. 2001. On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395-403. crossref(new window)

Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67.

Herrera-medina, M. J., Gagnon, H., Piche, Y., Ocampo, J. A., Garciagarrido, J. M. and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164: 993-998. crossref(new window)

Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304: 227-239. crossref(new window)

Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66. crossref(new window)

Huang, H. C., Lin, R. H., Chang, C. J., Collmer, A. and Deng, W. L. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733-746. crossref(new window)

Hugues, J. A. and Ollennu, L. A. A. 1994. Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus-a review. Plant Pathol. 43: 442-457. crossref(new window)

Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858. crossref(new window)

Ishiga, Y., Uppalapati, S. R., Ishiga, T., Elavarthi, S., Martin, B. and Bender, C. L. 2009. The phytotoxin coronatine induces lightdependent reactive oxygen species in tomato seedlings. New Phytol. 181: 147-160. crossref(new window)

Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A. L. and He, S. Y. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139. crossref(new window)