JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Research in Plant Disease
  • Volume 21, Issue 3,  2015, pp.193-200
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/RPD.2015.21.3.193
 Title & Authors
Effect of Gamma Irradiation on Botrytis cinerea Causing Gray Mold and Cut Chrysanthemum Flowers
Chu, Eun-Hee; Shin, Eun-Jung; Park, Hae-Jun; Jeong, Rae-Dong;
  PDF(new window)
 Abstract
Gray mold caused by Botrytis cinerea is one of the most important postharvest fungal pathogens of cut flowers. Here, gamma irradiation, an alternative for phytosanitary purposes, and sodium dichloroisocyanurate (NaDCC) were used to control B. cinerea in a cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivar, `Baekma`, one of the cultivars susceptible to B. cinerea. Spore germination and mycelium growth of B. cinerea were inhibited by gamma irradiation in an inversely dose-dependent manner. A dose of 4 kGy completely inhibited the mycelium growth of B. cinerea. A significant change in flower quality (physical properties) on chrysanthemum was shown from gamma irradiation at over 0.2 kGy (p<0.05). Therefore, in this study, the integration of gamma ray (below 0.2 kGy) and NaDCC, an eco-friendly form of chlorine, was investigated to control the disease with low dose of gamma irradiation dose. Interestingly, the gamma irradiated flowers showed more disease severity than the non-irradiated flowers. The combined treatment of gamma irradiation and NaDCC does not affect the severity of the fungal disease, whereas only 70 ppm of NaDCC treatment showed a significantly reduced severity. These results suggest that only chlorination treatment can be applied to control B. cinerea in cut chrysanthemum flowers.
 Keywords
Botrytis cinerea;Combined treatment;Gamma irradiation;NaDCC;
 Language
English
 Cited by
 References
1.
Aquino, S., Ferreira, F., Ribeiro, D. H. B., Correa, B., Greiner, R. and Villavicencio A. L. C. H. 2005. Evaluation of viability of Aspergillus flavus and aflatoxins degradation in irradiated samples of maize. Braz. J. Microbiol. 36: 352-356.

2.
Aziz, N. H., EI-Far, F. M., Shahin, A. A. M. and Roushy, S. M. 2007. Control of Fusarium moulds and fumonisin B1 in seeds by gammairradiation. Food Control 18: 1337-1342. crossref(new window)

3.
Blank, G. and Corrigon, D. 1995. Comparison of resistance of fungal spore to gamma and electron beam radiation. Int. J. Food Microbiol. 26: 269-277. crossref(new window)

4.
Bradford, M. M. 1976. A refined and sensitive method for the quantitative of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-253. crossref(new window)

5.
Bustos-Griffin, E., Hallman, G.J. and Griffin, R.L. 2012. Current and potential trade in horticultural products in irradiated for phytosanitary purposes. Radiat. Phys. Chem. 81: 1203-1207. crossref(new window)

6.
Chang, A. Y., Gladon, R. J., Gleason, M. L., Parker, S. K., Agnew, N. H. and Olson, D. G. 1997. Postharvest quality of cut roses following electron-beam irradiation. HortScience 32: 698-701.

7.
De Capdeville, G., Maffia, L. A., Finger, F. L. and Batista, U. G. 2005. Pre-harvest calcium sulfate applications affect vase life and severity of gray mold in cut roses. Sci. Hort. 103: 329-338. crossref(new window)

8.
Dubosis, M., Qilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Chemical analysis of microbial cells. Anal. Chem. 28: 350-356. crossref(new window)

9.
Dychdala, G. R. 1983. Chlorine and chlorine compounds. In: Disinfection, Sterilization, and Preservation, ed. by S. S. Block, pp. 157-182. Lippincott Williams and Wilkins, Philadelphia, USA.

10.
Elad, Y. 1998. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Prot. 7: 631-633.

11.
Fjeld, T., Gislerod, H. R., Revhaug, V. and Mortensen, L. M. 1994. Keeping quality of cut roses as affected by high supplementary irradiation. Sci. Hort. 57: 157-164. crossref(new window)

12.
Geweely, N. S. I. and Nawar, L. S. 2006. Sensitivity to gamma irradiation of post-harvest pathogens of pear. Int. J. Agr. Biol. 6: 710-716.

13.
Hallman, G. J. 2011. Phytosanitary applications of irradiation. Compr. Rev. Food Sci. Food Saf. 10: 143-151. crossref(new window)

14.
Hammer, P. E., Yang, S. F., Reid, M. S. and Marois, J. J. 1990. Postharvest control of Botrytis cinerea infections on cut roses using fungistatic storage atmospheres. J. Am. Soc. Hort. Sci. 115: 102-107.

15.
Jeong, R. D., Shin, E. J., Chu, E. H. and Park, H. J. 2015. Effects of ionizing radiation on postharvest fungal pathogens. Plant Pathol. J. 31: 176-180.

16.
Jung, K., Yoon, M., Park, H. J., Lee, K. Y., Jeong, R. D., Song, B. S. and Lee, J. W. 2014. Application of combined treatment for control of Botrytis cinerea in phytosanitary irradiation processing. Radiat. Phys. Chem. 99: 12-17. crossref(new window)

17.
Lewis, J. A. and Papavizas, G. C. 1987. Permeability changes in hyphae of Rhizoctonia solani induced germling preparations of Trichoderma and Gliocladium. Phytopathology 77: 699-703. crossref(new window)

18.
McDonnell, G. and Russell, A. D. 1999. Antiseptics and disinfectants: activity, action and, resistance. Clin. Microbiol. Rev. 12: 147-179.

19.
Nicholl, P. and Prendergast, M. 1998. Disinfection of shredded salad ingredients with sodium dichloroisocyanurate. J. Food Process. Pres. 22: 67-79. crossref(new window)

20.
Rattanawisalanon, C., Ketsa S. and van Doorn, W. G. 2003. Effect of aminooxyacetic and sugars on the vase life of Dendrobium flowers. Postharvest Biol. Technol. 29: 93-100. crossref(new window)

21.
Saleh, Y. G., Mayo, M. S. and Ahearn, D. G. 1988. Resistance of some common fungi to gamma irradiation. Appl. Environ. Microbiol. 54: 2134-2135.

22.
Schwinn, F. J. 1992. Significance of fungal pathogens in crop production. Pest Outlook 3: 18-28.

23.
Silva, J. A. 2003. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetic and transgenic biotechnology. Afr. J. Biotechnol. 12: 683-695.

24.
Suslow, T. 1997. Postharvest Chlorination, Basic Properties and Key Points for Effective Disinfection. Publication 8003. University of California, Oakland, CA, USA.

25.
Vrind, T. A. 2005. The Botrytis problem in figures. Acta Hortic. 669: 99-102.

26.
Williamson, B., Duncan, G. H., Harrison, J. G., Harding, L. A., Elad, Y. and Zimand, G. 1995. Effect of humidity on infecting of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol. Res. 99: 1303-1310. crossref(new window)

27.
Williamson, B., Tudzynski, B., Tudzynski, P. and Van Kan, I. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561-580. crossref(new window)

28.
Yoon, M., Jung, K., Lee, K. Y., Jeong, J. Y., Lee, J. W. and Park, H. J. 2014. Synergistic effect of the combined treatment with gamma irradiation and sodium dichloroisocyanurate to control gray mold (Botrytis cinerea) on paprika. Radiat. Phys. Chem. 98: 103-108. crossref(new window)