Advanced SearchSearch Tips
Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp.
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Research in Plant Disease
  • Volume 21, Issue 4,  2015, pp.280-289
  • Publisher : Korean Society of Plant Pathology
  • DOI : 10.5423/RPD.2015.21.4.280
 Title & Authors
Biological Control of Fusarium Stalk Rot of Maize Using Bacillus spp.
Han, Joon-Hee; Park, Gi-Chang; Kim, Joon-Oh; Kim, Kyoung Su;
  PDF(new window)
Maize (Zea mays L.) is an economically important crop in worldwide. While the consumption of the maize is steadily increasing, the yield is decreasing due to continuous mono-cultivation and infection of soil-borne fungal pathogens such as Fusarium species. Recently, stalk rot disease in maize, caused by F. subglutinans and F. temperatum has been reported in Korea. In this study, we isolated bacterial isolates in rhizosphere soil of maize and subsequently tested for antagonistic activities against F. subglutinans and F. temperatum. A total of 1,357 bacterial strains were isolated from rhizosphere. Among them three bacterial isolates (GC02, GC07, GC08) were selected, based on antagonistic effects against Fusarium species. The isolates GC02 and GC07 were most efficient in inhibiting the mycelium growth of the pathogens. The three isolates GC02, GC07 and GC08 were identified as Bacillus methylotrophicus, B. amyloliquefaciens and B. thuringiensis using 16S rRNA sequence analysis, respectively. GC02 and GC07 bacterial suspensions were able to suppress over 80% conidial germination of the pathogens. GC02, GC07 and GC08 were capable of producing large quantities of protease enzymes, whereas the isolates GC07 and GC08 produced cellulase enzymes. The isolates GC02 and GC07 were more efficient in phosphate solubilization and siderophore production than GC08. Analysis of disease suppression revealed that GC07 was most effective in suppressing the disease development of stalk rot. It was also found that B. methylotrophicus GC02 and B. amyloliquefaciens GC07 have an ability to inhibit the growth of other plant pathogenic fungi. This study indicated B. methylotrophicus GC02 and B. amyloliquefaciens GC07 has potential for being used for the development of a biological control agent.
Bacillus spp.;Biological control;Fusarium spp.;Maize;Stalk rot;
 Cited by
오이 잎에서 Chlorella fusca 처리에 의한 오이탄저병 발생 억제 기작,이윤주;고윤정;전용철;

식물병연구, 2016. vol.22. 4, pp.257-263 crossref(new window)
Annapurna, K., Kumar, A., Kumar, L. V., Govindasamy, V., Bose, P. and Ramadoss, D. 2013. PGPR-Induced Systemic Resistance (ISR) in Plant Disease Management Bacteria in Agrobiology: Disease Management. pp. 405-425. Springer.

Arrebola, E., Jacobs, R. and Korsten, L. 2010. Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J. Appl. Microbiol. 108: 386-395. crossref(new window)

Bagg, A. and Neilands, J. 1987. Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol. Rev. 51: 509.

Barros, F. F. C., Simiqueli, A. P. R., de Andrade, C. J. and Pastore, G. M. 2013. Production of enzymes from agroindustrial wastes by biosurfactant-producing strains of Bacillus subtilis. Biotechnol. Res. Int. 2013: 9.

Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growthpromoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35: 1044-1051. crossref(new window)

Bhaskar, N., Sudeepa, E., Rashmi, H. and Selvi, A. T. 2007. Partial purification and characterization of protease of Bacillus proteolyticus CFR3001 isolated from fish processing waste and its antibacterial activities. Bioresour. Technol. 98: 2758-2764. crossref(new window)

Bhattacharyya, P. and Jha, D. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microb. Biot. 28: 1327-1350. crossref(new window)

Borriss, R. 2011. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. pp. 41-76. Springer.

Cavaglieri, L., Orlando, J., Rodriguez, M., Chulze, S. and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res. Microbial. 156: 748-754. crossref(new window)

Chen, L., Wang, N., Wang, X., Hu, J. and Wang, S. 2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour. Technol. 101: 8822-8827. crossref(new window)

Chitarra, G., Breeuwer, P., Nout, M., Van Aelst, A., Rombouts, F. and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94: 159-166. crossref(new window)

Crane, J., Gibson, D., Vaughan, R. and Bergstrom, G. 2013. Iturin levels on wheat spikes linked to biological control of Fusarium head blight by Bacillus amyloliquefaciens. Phytopathology 103: 146-155. crossref(new window)

Fumero, M. V., Reynoso, M. M. and Chulze, S. 2015. Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. Int. J. Food Microbiol. 199: 86-92. crossref(new window)

Gaind, S. and Gaur, A. 1991. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 133: 141-149. crossref(new window)

Hertel, T. W., Golub, A. A., Jones, A. D., O'Hare, M., Plevin, R. J. and Kammen, D. M. 2010. Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating marketmediated responses. BioScience 60: 223-231. crossref(new window)

Howard, R. J. and Ferrari, M. A. 1989. Role of melanin in appressorium function. Exp. Mycol. 13: 403-418. crossref(new window)

Kim, B. Y., Ahn, J. H. Weon, H. Y., Song, J., Kim, S. I. and Kim, W. G. 2012. Isolation and characterization of Bacillus species possessing antifungal activity against ginseng root rot pathogens. Korean J. Pestic. Sci. 16: 357-363. crossref(new window)

Kim, S. L., Moon, H. G. and Ryu, Y. H. 2002. Current status and prospect of quality evaluation in maize. Korean J. Crop Sci. 47: 107-123.

Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885-886. crossref(new window)

Kriek, N., Marasas, W., Steyn, P., Van Rensburg, S. and Steyn, M. 1977. Toxicity of a moniliformin-producing strain of Fusarium moniliforme var. subglutinans isolated from maize. Food Cosmet. Toxicol. 15: 579-587. crossref(new window)

Kwak, Y. K., Kim, I. S., Cho, M. C., Lee, S. C. and Kim, S. 2012. Growth inhibition effect of environment-friendly farm materials in Colletotrichum acutatum in vitro J. Bio-Environ. Control 21: 127-133.

Lemanceau, P. and Alabouvette, C. 1991. Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot. 10: 279-286. crossref(new window)

Lew, H., Chelkowski, J., Pronczuk, P. and Edinger, W. 1996. Occurrence of the mycotoxin moniliformin in maize (Zea mays L.) ears infected by Fusarium subglutinans (Wollenw. & Reinking) Nelson et al. Food Addit. Contam. 13: 321-324. crossref(new window)

Lobell, D. B., Cassman, K. G. and Field, C. B. 2009. Crop yield gaps: their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 34: 179. crossref(new window)

Madhaiyan, M., Poonguzhali, S., Kwon, S.-W. and Sa, T.-M. 2010. Bacillus methylotrophicus sp. nov., a methanol-utilizing, plantgrowth-promoting bacterium isolated from rice rhizosphere soil. Int. J. Syst. Evol. Microbiol. 60: 2490-2495. crossref(new window)

Nakamura, A., Uozumi, T. and Beppu, T. 1987. Nucleotide sequence of a cellulase gene of Bacillus subtilis. Eur. J. Biochem. 164: 317-320. crossref(new window)

Nawani, N. and Kaur, J. 2000. Purification, characterization and thermostability of lipase from a thermophilic Bacillus sp. J33. Mol. Cell. Biochem. 206: 91-96. crossref(new window)

Nirenberg, H. I. and O'Donnell, K. 1998. New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90: 434-458. crossref(new window)

Oerke, E. C. 2006 Crop losses to pests. Thai J. Agric. Sci. 144: 31-43. crossref(new window)

Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125. crossref(new window)

Patrick, W. and Khalid, R. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186: 53-55. crossref(new window)

Qiao, J. Q., Wu, H. J., Huo, R., Gao, X. W. and Borriss, R. 2014. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem. Biol. Technol. Agric. 1: 1-14. crossref(new window)

Reid, L. M. and Zhu, X. 2004. Common diseases of silage corn in Canada. Bull. Agriculture and Agri-Food, Canada, Ottawa, Ontario.

Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339. crossref(new window)

Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61: 559-562. crossref(new window)

Scauflaire, J., Gourgue, M., Callebaut, A. and Munaut, F. 2012. Fusarium temperatum, a mycotoxin-producing pathogen of maize. Eur. J. Plant Pathol. 133: 911-922. crossref(new window)

Scauflaire, J., Gourgue, M. and Munaut, F. 2011. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia 103: 586-597. crossref(new window)

Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. and An, D. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44: 29-37. crossref(new window)

Shin, J. H., Han, J. H., Kim, M. J., Kim, J. O. and Kim, K. S. 2014a. Identification of Fusarium subglutinans, the casual pathogen of corn stalk rot in Korea and investigation of effectiveness of fungicides against the pathogen. J. Agric. Life Sci. 48: 43-51. crossref(new window)

Shin, J. H., Han, J. H., Lee, J. K. and Kim, K. S. 2014b. Characterization of the maize stalk rot pathogens Fusarium subglutinans and F. temperatum and the effect of fungicides on their mycelial growth and colony formation. Plant Pathol. J. 30: 397-406. crossref(new window)

Sivan, A., Ucko, O. and Chet, I. 1987. Biological control of Fusarium crown rot of tomato by Trichoderma harzianum under field conditions. Plant Dis. 71: 587-592. crossref(new window)

Smith, T. J., Blackman, S. A. and Foster, S. J. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249-262. crossref(new window)

Sun, L., Lu, Z., Bie, X., Lu, F. and Yang, S. 2006. Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J. Microb. Biot. 22: 1259-1266. crossref(new window)

The Korean Society of Plant Pathology. 2004. List of plant disease in Korea, fourth edition. pp. 45-47.

Thippeswamy, S., Girigowda, K. and Mulimani, V. 2014, Isolation and identification of ${\alpha}$-amylase producing Bacillus sp. from dhal industry waste. Indian J. Biochem. Biophys. 43: 295-298.

Varela, C. P., Casal, O. A., Padin, M. C., Martinez, V. F., Oses, M. S., Scauflaire, J., Munaut, F., Castro, M. B. and Vazquez, J. P. 2013. First report of fusarium temperatum causing seedling blight and stalk rot on maize in Spain. Plant Dis. 97: 1252-1252.

Varshney, R. K., Ribaut, J. M. Buckler, E. S., Tuberosa, R., Rafalski, J. A. and Langridge, P. 2012. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30: 1172-1176. crossref(new window)

Wang, J. H., Zhang, J. B., Li, H. P., Gong, A. D., Xue, S., Agboola R. S. and Liao, Y. C. 2014. Molecular identification, mycotoxin production and comparative pathogenicity of Fusarium temperatum isolated from maize in China. J. Phytopathol. 162: 147-157. crossref(new window)

Watanabe, M., Yonezawa, T., Lee, K. I., Kumagai, S., Sugita-Konishi, Y. Goto, K. and Hara-Kudo, Y. 2011. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes. BMC Evol. Biol. 11: 322. crossref(new window)

Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., Uchida, M. and Tanaka, H. 1993. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J. Biol. Chem. 268: 18567-18572.

Yoo, J. H., Park, I. C. and Kim, W. G. 2012. Biocontrol of anthracnose of chili pepper by Bacillus sp. NAAS-1. Korean J. Mycol. 40: 277-281. crossref(new window)

Yuan, J., Raza, W., Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78: 5942-5944. crossref(new window)