JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Genetic Relationships of Sandfish (Arctoscopus japonicas) from Five Different Areas of Korea and Japan Based on Mitochondrial DNA and Microsatellite Analyses
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 11,  2015, pp.1204-1213
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.11.1204
 Title & Authors
Genetic Relationships of Sandfish (Arctoscopus japonicas) from Five Different Areas of Korea and Japan Based on Mitochondrial DNA and Microsatellite Analyses
Kim, Eun-Mi; Kang, Hyun-Sook; Kang, Jung-Ha; Kim, Dong-Gyun; An, Cheul Min; Lee, Hae Won; Park, Jung Youn;
  PDF(new window)
 Abstract
A comprehensive analysis of the population structure of the sandfish (Arctoscopus japonicas), the most abundant fishery resource in the East Sea of Korea, has not been carried out, despite its importance in Korea. The present study examined the genetic diversity and differences between five populations (two Japanese and three Korean populations) of A. japonicas captured in the East Sea using both the 401 bp sequence of mitochondrial DNA (mtDNA, cytochrome b) and five microsatellite DNA (msDNA) markers. The results of the analysis using the Cyt b sequence revealed 27 haplotypes. Based on msDNA variations, the estimated expected heterozygosity (HE) in each population ranged from 0.68 (Gampo, Korea) to 0.7765 (Erimo, Japan). Pairwise FST and AMOVA tests using both the Cyt b sequence and msDNA data pointed to significant differences between the Korean and Japanese populations (mtDNA; FST
 Keywords
Arctoscopus japonicas;genetic relationship;microsatellite;mitochondrial DNA;sandfish;
 Language
Korean
 Cited by
 References
1.
An, H. C., Lee, K. H., Lee, S. I., Park, H. H., Bae, B. S., Yang, J. H. and Kim, J. B. 2011. Behaviour habitats of sailfin sandfish, Arctoscopus japonicas approaching toward the eastern coastal waters of Korea in the spawning season. Jour. Fish. Mar. Sci. Edu. 23, 35-42.

2.
Avise, J. C. 1994. Molecular markers, Natural History and Evolution. Chapman and Hall, New York.

3.
Beacham, T. D., Lapointe, M., Candy, J. R., Miller, K. M. and Withler, R. E. 2004. DNA in action: rapid application of DNA variation to sockeye salmon fisheries management. Conserv. Gen. 5, 411-416. crossref(new window)

4.
Brown, W. M., George, M. Jr. and Wilson, A. C. 1979. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 76, 1967-1971. crossref(new window)

5.
Carr, S. M. and Marshall, H. D. 1991. Detection of intraspecific DNA sequence variation in the mitochondrial cytochrome b gene of Atlantic cod (Gadus morhua) by the polymerase chain reaction. Can. J. Fish. Aquat. Sci. 48, 48-52. crossref(new window)

6.
DeWoody, J. A. and Avise, J. C. 2000. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J. Fish. Biol. 56, 461-473. crossref(new window)

7.
Evanno, G., Reguaut, S. and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611-2620. crossref(new window)

8.
Excoffier, L., Laval, G. and Schneider, S. 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47-50.

9.
Excoffier, L., Smouse, P. E. and Quattro, J. M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.

10.
Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485-486.

11.
Hillis, D. M., Mabel, B. K. and Moritz, C. 1996. Application of molecular systematic: the state of the field and a look to the future, pp. 515-543. In: Molecular Systematics, 2nd edn. (eds. Hillis, D., Moritz, C., Mable, B. K.), Sinauer Associates, Massachusetts.

12.
Jarne, P. and Lagoda, P. J. G. 1996. Microsatellites, from molecules to populations and back. Trends. Ecol. Evol. 11, 424-429. crossref(new window)

13.
Kim, I. S., Choi, Y., Lee, C. Y., Lee, Y. J., Kim, B. J. and Kim, J. H. 2005. Illustrated book of Korean fishes. pp. 1-615. Kyohak Press, Seoul.

14.
Kim, J. Y., Yoon, M. G., Moon, C. H., Kang, C. K., Choi, K. H. and Lee, C. I. 2013. Morphological and genetic stock identification of Todarodes pacificus in Korean waters. J. Kor. Soc. Oceanogr. 18, 131-141.

15.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. crossref(new window)

16.
Kobayashi, T. and Kaga, Y. 1981. Population of sandfish, Arctoscopus japonicas (Steindachner), in the seas around Hokkaido estimated from the variations of meristic characters (in Japanese). Bull. Hokkaido. Reg. Fish. Res. Lab. 46, 69-83.

17.
Langella, O. 2002. POPULATIONS 1.2.29. Population genetic software (individuals or populations distances, phylogenetic trees), http://bioinformatics.org/-tryphon/populations.

18.
Lansman, R. A., Shade, R. O., Shapira, J. F. and Avise, J. C. 1981. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. ΙΙΙ. Techniques and potential applications. J. Mol. Evol. 17, 214-226. crossref(new window)

19.
Lee, S. I., Yang, J. H., Yoon, S. C., Chun, Y. Y., Kim, J. B., Cha, H. K. and Choi, Y. M. 2009. Biomass estimation of sailfin sandfish, Arctoscopus japonicas, in Korean waters. Kor. J. Fish. Aquat. Sci. 42, 487-493.

20.
Liu, Z. 2011. Genomic variations and marker technologies for genome-based selection. In: Liu, Z. (ed.), Next Generation Sequencing and Whole Genome Selection in Aquaculture. WileyBlackwell, Oxford, U.K.

21.
Liu, Z. J. and Cordes, J. F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1-37. crossref(new window)

22.
Nei, M. 1972. Genetic distance between populations. Am. Nat. 106, 283-292. crossref(new window)

23.
NFRDI (National Fisheries Research and Development Institute). 2004. Commercial fishes of the coastal and offshore waters in Korea. pp. 1-333. 2nd ed Hangul Press, Busan.

24.
Ochiai, A. and Tanaka, M. 1986. Ichthyology, vol 2, new edn (in Japanese). Koseisha-Koseikaku, Tokyo.

25.
Okiyama, M. 1970. Studies on the population biology of the sandfish, Arctoscopus japonicas (Steindachner). ΙΙ. Population analysis (preliminary report) (in Japanese). Bull. Jpn. Sea. Reg. Fish. Res. Lab. 22, 59-69.

26.
Okiyama, M. 1990. Contrast in reproductive style between two species of sandfishes (family Trichodontidae). Fish. Bull. 88, 543-549.

27.
Park, C. J., Nam, W. S., Lee, J. H., Noh, J. K., Kim, H. C., Park, J. W., Hwang, I. J. and Kim, S. Y. 2013. Analysis of genetic divergence according to each mitochondrial DNA region of Haliotis discus hannai. Kor. J. Malacol. 29, 335-341. crossref(new window)

28.
Park, J. Y., Lee, H. J., Kim, W. J., Lee, J. H. and Min, K. S. 2000. Mitochondrial cytochrome b sequence variation in Korean salmonids. J. Fish. Biol. 56, 1145-1154. crossref(new window)

29.
Park, J. Y., Lee, S. J., Lee, H. W., Lee, Y. G., Jung, S. J. and Kang, Y. J. 2006. Polymerase chain reaction primers for polymorphic microsatellite loci from the Korean sandfish, Arctoscopus japonicas. Mol. Ecol. Notes 6, 674-676. crossref(new window)

30.
Peakall, R. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288-295. crossref(new window)

31.
Perez-Enriquez, R., Takagi, M. and Taniguchi, N. 1999. Genetic variability and pedigree tracting of a hatchery-reared stock of red sea bream (Pagrus major) used for stock enhancement, based on microsatellite DNA markers. Aquaculture 173, 413-423. crossref(new window)

32.
Pritchard, J. K., Stephens, M. and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945-959.

33.
Rousset, F. 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103-106. crossref(new window)

34.
Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M. and Yamashita, Y. 2003. Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys oliaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture 221, 255-263. crossref(new window)

35.
Shirai, S. M., Kuranaga, R., Sugiyama, H. and Higuchi, M. 2006. Population structure of the sailfin sandfish, Arctoscopus japonicas (Trichodontidae), in the Sea of Japan. Ichthyol. Res. 53, 357-368. crossref(new window)

36.
Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman, San Francisco.

37.
Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512-526.

38.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolurionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739. crossref(new window)

39.
Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl. Acids. Res. 17, 6463-6471. crossref(new window)

40.
Ward, R. D., Zemlak, T. S., Innes, B. H., Last, R. R. and Hebert, P. D. H. 2005. DNA barcoding Australia′s fish species. Philos. Trans. R. Soc. Biol. Sci. 360, 1847-1857. crossref(new window)

41.
Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. crossref(new window)

42.
Yang, J. H., Lee, S. I., Park, K. Y., Yoon, S. C., Kim, J. B., Chun, Y. Y., Kim, S. W. and Lee, J. B. 2012. Migration and distribution changes of the Sandfish, Arctoscopus japonicas in the East Sea. J. Kor. Soc. Fish. Tech. 48, 401-141. crossref(new window)

43.
Zardoya, R. and Doadri, I. 1999. Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. J. Mol. Evol. 49, 227-237. crossref(new window)