JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Physicochemical Properties of Fish-meat Gels Prepared from Farmed-fish
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 11,  2015, pp.1280-1289
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.11.1280
 Title & Authors
Physicochemical Properties of Fish-meat Gels Prepared from Farmed-fish
Kim, Hyung Kwang; Kim, Se Jong; Karadeniz, Fatih; Kwon, Myeong Sook; Bae, Min-Joo; Gao, Ya; Lee, Seul-Gi; Jang, Byeong Guen; Jung, Jun Mo; Kim, Seo yeon; Kong, Chang-Suk;
  PDF(new window)
 Abstract
Fish-meat gel is being produced mostly relying on surimi and raw materials imported from Southeast Asia and North America and present in small amount in local markets. In this study, common farmed local fishes were examined as stable and reliable sources of surimi for fish-meat gel production. For testing, five main farmed-fish of Korea, namely; Bastard halibut (Paralichthys olivaceus), Red sea bream (Pagrus major), Korean rockfish (Sebastes schlegeli), Common mulle (Mugil cephalus), and Finespotted flounder (Pleuronichthys cornutus) were used following a traditional washing process. The quality of the surimi was determined by the values of water content, whiteness index, gel strength and impurity. Accordingly, fish-meat gel and surimi quality experiments were carried out by measuring compressive and texture properties, expressible moisture content, Hunter color scale values and SDS-page protein patterns. Also gel characteristics were compared with that of FA and RA grade surimi (Alaska Pollock). Fish-meat gels were prepared by salt mincing the farmed-fish surimi with NaCl (2% w/w) and moisture adjustment to 84% by ice water adding. Prepared fish-meat paste was filled into 20-25 cm long polyvinylidene chloride casings and heated at 90℃ for 20 min. The whiteness values of fish-meat gels produced from surimi were increased by using farmed-fish and became comparable to that of FA Alaska Pollock gel. Among all tested farmed-fish, P. olivaceus and P. major exhibited better properties than RA Alaska Pollock and similar properties to FA Alaska Pollock. Therefore, current data suggests that fish farming can be an efficient and sustainable fish-meat source for fish-meat gel production in Korea.
 Keywords
Alaska Pollock;aquaculture;farmed-fish;fish-meat gel;surimi;
 Language
Korean
 Cited by
 References
1.
Benjakul, S., Visessanguan, W. and Kwalumtharn, Y. 2004. The effect of whitening agents on the gel-forming ability and whiteness of surimi. Int. J. Food Sci. Technol. 39, 773-781. crossref(new window)

2.
Benjakul, S., Visessanguan, W. and Srivilai, C. 2001. Gel properties of bigeye snapper (Priacanthus tayenus) surimi as affected by setting and porcine plasma proteins. J. Food Qual. 24, 453-471. crossref(new window)

3.
Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K. and Corner, R. 2010. Aquaculture: global status and trends. Phil. Trans. R. Soc. B. 365, 2897-2912. crossref(new window)

4.
Campo-Deaño, L. and Tovar, C. 2009. The effect of egg albumen on the viscoelasticity of crab sticks made from Alaska Pollock and Pacific Whiting surimi. Food Hydrocolloid. 23, 1641-1646. crossref(new window)

5.
Cardoso, C., Mendes, R., Vaz-Pires, P. and Nunes, M. L. 2010. Effect of salt and MTGase on the production of high quality gels from farmed sea bass. J. Food Eng. 101, 98-105. crossref(new window)

6.
Chinabhark, K., Benjakul, S. and Prodpran, T. 2007. Effect of pH on the properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi. Bioresour. Technol. 98, 221-225. crossref(new window)

7.
Daniel, C. R., Cross, A. J., Koebnick, C. and Sinha, R. 2011. Trends in meat consumption in the USA. Public Health Nutr. 14, 575-583. crossref(new window)

8.
Duangmal, K. and Taluengphol, A. 2010. Effect of protein additives, sodium ascorbate, and microbial transglutaminase on the texture and colour of red tilapia fish-meat gels. Int. J. Food Sci. Technol. 45, 48-55.

9.
Huff-Lonergan, E. and Lonergan, S. M. 2005. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71, 194-204. crossref(new window)

10.
Huynh, M. D. and Kitts, D. D. 2009. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem. 114, 912-918. crossref(new window)

11.
Jin, S. K., Kim, I. S., Kim, S. J., Jeong, K. J., Choi, Y. J. and Hur, S. J. 2007. Effect of muscle type and washing times on physico-chemical characteristics and qualities of surimi. J. Food Eng. 81, 618-623. crossref(new window)

12.
Keskin, E. and Atar, H. H. 2012. Molecular identification of fish species from surimi based products labeled as Alaskan Pollock. J. Appl. Inchtyol. 28, 811-814. crossref(new window)

13.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. crossref(new window)

14.
Lanier, T. C., Yongsawatdigul, J. and Carvajal-Rondanelli, P. 2013. Fish-meat gelsation Chemistry, pp. 101-140. In: Park, J. W. (ed.), Surimi and surimi seafood. CRC Press: Boca Raton, FL, USA.

15.
Luo, Y. K., Kuwahara, R., Kaneniwa, M., Murata, Y. and Yokoyama, M. 2001. Comparison of gel properties of surimi from Alaska Pollock and three freshwater fish species: Effects of thermal processing and protein concentration. Food Sci. 66, 548-554. crossref(new window)

16.
Morales, O. G., Ramirez, J. A., Vivanco, D. I. and Vazquez, M. 2001. Surimi of fish species from the Gulf of Mexico: evaluation of the setting phenomenon. Food Chem. 75, 43-48. crossref(new window)

17.
Offer, G. and Trinick, J. 1983. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 8, 245-281. crossref(new window)

18.
Oken, E., Choi, A. L., Karagas, M. R., Mariën, K., Rheinberger, C. M., Schoeny, R. and Korrick, S. 2012. Which fish should I eat? Perspectives influencing fish consumption choices. Environ. Health Perspect. 120, 790. crossref(new window)

19.
Olsen, R. L. and Hasan, M. R. 2012. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Tech. 27, 120-128. crossref(new window)

20.
Pan, J., Shen, H. and Luo, Y. 2010. Cryoprotective effects of trehalose on grass carp (Ctenopharyngodon idellus) surimi during frozen storage. J. Food Process. Preserv. 34, 715-727.

21.
Pietrowski, B. N., Tahergorabi, R., Matak, K. E., Tou, J. C. and Jaczynski, J. 2011. Chemical properties of surimi seafood nutrified with ω-3 rich oils. Food Chem. 129, 912-919. crossref(new window)

22.
Rawdkuen, S., Benjakul, S., Visessanguan, W. and Lanier, T. C. 2004. Chicken plasma protein affects gelation of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocolloid. 18, 259-270. crossref(new window)

23.
Shaviklo, A. R. and Fahim, A. 2014. Quality improvement of silver carp fingers by optimizing the level of major elements influencing texture. Int. Food Res. J. 21, 283-290.

24.
Shiku, Y., Hamaguchi, P. Y., Benjakul, S., Visessanguan, W. and Tanaka, M. 2004. Effect of surimi quality on properties of edible films based on Alaska Pollack. Food Chem. 86, 493-499. crossref(new window)

25.
Taskaya, L., Chen, Y. C. and Jaczynski, J. 2010. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT-Food Sci. Technol. 43, 401-408. crossref(new window)

26.
Trondsen, T. 1998. Blue whiting surimi: new perspectives on the market value. Fish. Res. 34, 1-15. crossref(new window)

27.
Yoon, K. S. and Lee, C. M. 1990. Cryoprotectant effects in surimi and surimi/mince based extruded products. J. Food Sci. 55, 1210-1216. crossref(new window)