JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 12,  2015, pp.1339-1346
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.12.1339
 Title & Authors
Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli
Seo, Yong Bae; Lee, Jong Kyu; Jeong, Tae Hyug; Nam, Soo-Wan; Kim, Gun-Do;
  PDF(new window)
 Abstract
The aim of this study is to increase production of carotenoids in recombinant Escherichia coli by Archaea chaperonin. The carotenoids are a widely distributed class of structurally and functionally diverse yellow, orange, and red natural pigments. These pigments are synthesized in bacteria, algae, fungi, and plants, and have been widely used as a feed supplement from poultry rearing to aquaculture. Carotenoids also exhibit diverse biological properties, such as strong antioxidant and antitumor activities, and enhancement of immune responses. In the microbial world, carotenoids are present in both anoxygenic and oxygenic photosynthetic bacteria and algae and in many fungi. We have previously reported cloning and functional analysis of the carotenoid biosynthesis genes from Paracoccus haeundaensis. The carotenogenic gene cluster involved in astaxanthin production contained seven carotenogenic genes (crtE, crtB, crtI, crtY, crtZ, crtW and crtX genes) and recombinant Escherichia coli harboring seven carotenogenic genes from Paracoccus haeundaensis produced 400 μg/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin, we have co-expressed chaperone genes (ApCpnA and ApCpnB) in recombinant Escherichia coli harboring the astaxanthin biosynthesis genes. This engineered Escherichia coli strain containing both chaperone gene and astaxanthin biosynthesis gene cluster produced 890 μg/g DCW of astaxanthin, resulting 2-fold increased production of astaxanthin.
 Keywords
Astaxanthin;carotenogenic;chaperonin;co-expression;Paracoccus haeundaensis;
 Language
Korean
 Cited by
 References
1.
Bartley, G. E. and Scolink, P. A. 1995. Pigment for photoprotection, visual attraction, and human health. Plant Cell 7, 1027-1038. crossref(new window)

2.
Bubrick, P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38, 237-239. crossref(new window)

3.
Gonzalez-Montalban, N., Carrio, M. M., Cuatrecasas, S., Aris, A. and Villaverde, A. 2005. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J. Biotechnol. 10, 406-412.

4.
Gragerov, A., Nudler, E., Komissarova, N., Gaitanaris, G. A., Gottesman, M. E. and Nikiforov, V. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89, 10341-10344. crossref(new window)

5.
Han, N. S. and Tao, B. Y. 1999. Enhancement of solubility of Bacillus macerans cyclodextrin glucanotransferase by thioredoxin fusion. Food Sci. Biotechnol. 8, 216-279.

6.
Harker, M., Hirschberg, J. and Oren, A. 1998. Paracoccus marcusii sp. nov., an orange Gram negative coccus. Int. J. Syst. Evol. Microbiol. 48, 543-548.

7.
Hartl, F. U. 1996. Molecular chaperones in cellular protein folding. Nature 381, 571-580. crossref(new window)

8.
Kim S. W., Kim, G. D. and Nam, S. W. 2015. Coexpression of alginate lyase with Hyperthermophilic archaea chaperonin in E. coli. J. Life Sci. 25, 130-135. crossref(new window)

9.
Kobayashi, M., Kurimura, Y., Kakizono, T., Nishio, N and Tsuji, Y. 1997. Morphological changes in the life cycle of the green alga Haematococcus pluvialis. J. Ferment. Bioeng. 84, 94-97. crossref(new window)

10.
Kondo, A., Kohda, J., Endo, Y., Shiromizu, T., Kurokawa, Y., Nishihara, K., Yanagi, H., Yura, T. and Fukuda, H. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90, 600-606. crossref(new window)

11.
Kwak, Y. H., Kim, S. J., Lee, K. Y. and Kim, H. B. 2000. Stress responses of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10, 63-68.

12.
Kwon, M. J., Park, S. L., Kim, S. K. and Nam, S. W. 2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12, 1002-1005.

13.
Lee, J. H., Kim, Y. S., Choi, T. J., Lee, W. J. and Kim, Y. T. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 1699-1702. crossref(new window)

14.
Lee, J. H. and Kim, Y. T. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370, 86-95. crossref(new window)

15.
Lee, J. H., Seo, Y. B., Jeong, S. Y., Nam, S. W. and Kim, Y. T. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotechnol. Bioprocess Eng. 12, 312-317 crossref(new window)

16.
Lee, J. H., Seo, Y. B. and Kim, Y. T. 2008. Enhanced production of astaxanthin by metabolic engineered isoprenoid pathway in Escherichia coli. J. Life Sci. 18, 1764-1770. crossref(new window)

17.
Lee, P. C. and Schmidt-Dannert, C. 2002. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60, 1-11. crossref(new window)

18.
Melis, A., Spangfort, M. and Andersson, B. 1987. Light absorption and electron transport balance between PSII and PSI in spinach chloroplasts. Photochem. Photobiol. 45, 129-136. crossref(new window)

19.
Miller, M., Yoneyama, W. M. and Soneda, M. 1976. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Evol. Microbiol. 26, 286-291.

20.
Nishihar, K., Kanemori, M., Yanagi, H. and Yura, T. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884-889. crossref(new window)

21.
Nishihar, K., Kanemori, M., Kitagawa, M., Yanagi, H. and Yura, T. 1998. Chaperone coexpression plasmids: differential and synergistic roles DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694-1699.

22.
Seo, Y. B., Kim, D. E., Kim, G. D., Kim, H. W., Nam, S. W., Kim, Y. T. and Lee, J. H. 2009. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 59, 2769-2772. crossref(new window)

23.
Seo, Y. B., Choi, S. S., Nam, S. W., Lee, J. H. and Kim, Y. T. 2009. Cloning and characterization of the zeaxanthin glucosyltransferase gene (crtX) from the astaxanthin-producing marine bacterium, Paracoccus haeundaensis. J. Microbiol. Biotechnol. 19, 1542-1546. crossref(new window)

24.
Szabo, A., Langer, T., Schroder, H., Flanagan, J., Bukau, B. and Hartl, F. U. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91, 10345-10349. crossref(new window)

25.
Thomas, J. G., Ayling, A. and Baneyx, F. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66, 197-238. crossref(new window)

26.
Tsubokura, A., Yoneda, H. and Mizuta, H. 1999. Paracoccus carotinifaciens sp. nov., a new aerobic Gram negative astaxanthin producing bacterium. Int. J. Syst. Evol. Microbiol. 49, 277-282.

27.
Wall, J. G. and Pluckthun, A. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6, 507-516. crossref(new window)

28.
Wegrzyn, R. D. and Deuerling, E. 2005. Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding. Cell Mol. Life Sci. 62, 2727-2738. crossref(new window)

29.
Yokoyama, A., Izumida, H. and Miki, W. 1994. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotechnol. Biochem. 58, 1842-1844. crossref(new window)