Advanced SearchSearch Tips
Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 12,  2015, pp.1393-1398
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.12.1393
 Title & Authors
Enzymatic Production and Adipocyte Differentiation Inhibition of Low-Molecular-Weight-Alginate
Park, Mi-Ji; Kim, Yeon-Hee; Kim, Gun-Do; Nam, Soo-Wan;
  PDF(new window)
In this study, we investigated the extraction condition of alginate from Laminaria japonica, the enzymatic degradation of the extracted alginate, and the inhibitory activity of the degraded alginate on the differentiation of 3T3-L1 preadipocytes. The optimal conditions for the efficient extraction, precipitation, and recovery of alginate from the brown seaweed L. japonica were 1% for Na2CO3 concentration, 80℃ for extraction temperature, and ethanol for precipitation solvent. In the enzymatic reaction for the production of low-molecular-weight alginate (LMWA) by using alginate lyase from Flavobacterium sp., the initial concentration of Laminaria alginate was 3%. The low-molecular-weight degree from alginate was independent with the enzyme concentration, and the optimal concentration of alginate lyase was found to be 5 unit/ml. Through the enzymatic reaction with 5 unit/ml of alginate lyase at 37℃ for 3 hr, the viscosity and molecular weight of LMWA were 4.5 cp and 307 kDa, respectively. Treatment with LMWA significantly suppressed the accumulation of lipid droplet and triglyceride in 3T3-L1 preadipocytes with a dose-dependent manner. Therefore, it seems that LMWA treatment could inhibit the differentiation of 3T3-L1 preadipocytes. These results indicate that LMWA or the degraded alginate produced by alginate lyase enzyme can be useful for the development of anti-obesity biosubstances.
3T3-L1 preadipocyte;adipocyte differentiation;alginate lyase;Laminaria japonica;lowmolecular-weight alginate;
 Cited by
Chan, S. W., Kim, K. B. W. R., Kim, D. H., Jung, S. A., Kim, H. J., Jeong, D. H., Jung, H. Y., Lim, S. M., Hong, Y. K. and Ahn, D. H. 2012. Optimization of conditions for the production of aginate-degrading crude enzyme from Vibrio crassostreae PKA 1002. Kor. J. Microbiol. Biotechnol. 40, 243-249. crossref(new window)

Chan, S. W., Kim, K. B. W. R., Kim, D. H., Jung, S. A., Kim, H. J., Jeong, D. H., Jung, H. Y., Kang, B. K., Bark, S. W., Lim, S. M., Hong, Y. K. and Ahn, D. H. 2013. Optimization of conditions for the production and properties of alginate-degradingcrude enzyme from Shewanella oneidensis PKA 1008. Kor. J. Microbiol. Biotechnol. 41, 372-378. crossref(new window)

Davidson, I. W., Sutherland, I. W. and Lawson, C. J. 1976. Purification and properties of an alginate lyase from a marine bacterium. Biochem. J. 159, 707-713. crossref(new window)

Guven, K. C., Ozsoy, Y. and Ulutin, O. N. 1991. Anticoagulant, fibrinotic and antiaggregant activity of carrageenans and alginic acid. Biotan. Marina 34, 429-435.

Haug, A., Larsen, B. and Smidsrod, O. 1967. Studies on the sequence of uronic acid residues in alginic acid. Acta. Chemica. Scandinabia 21, 691-704. crossref(new window)

Hirst, E. L. and Rees, D. A. 1965. The structure of alginic acid. Part V. isolation and unambiguous characterization of some hydrolysis products of the methylated polysaccharide. J. Chem. Soc. 7, 1182-1187.

Hwang, H. J., Pyeun, J. H. and Nam, T. J. 2000. The effects of alginic acid on 3T3-L1 cell’s differentiation. J. Kor. Fish. Soc. 33, 541-545.

Inoue, A., Takadono, K., Nishiyama, R., Tajima, K., Kobayashi, T. and Ojima, T. 2014. Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli. Mar. Drugs 12, 4693-4712. crossref(new window)

Jeong, H. J., Lee, S. A., Moon, P. D., Na, H. J., Park, R. K., Um, J.Y., Kim, H. M. and Hong, S. H. 2006. Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. Clin. Exp. Allergy 36, 785-794. crossref(new window)

Kim, I. H. and Nam, T. J. 2004. The effects of polymannuronates on leptin in 3T3-L1 adipocytes. J. Kor. Fish. Soc. 37, 372-379.

Kim, E. J., Fathoni, A., Jeong, G. T., Jeong, H. D., Nam, T. J., Kong, I. S. and Kim, J. K. 2013. A novel alginate-and laminarin-degrading bacterium for the reutilization of brown- seaweed waste. J. Environ. Manage. 30, 153-159.

Kim, H. S. 2013. Synergistic effect of acetylalginate esterase and alginate lyase on the degradation of acetylalginate from Pseudomonas aeruginosa ATCC 39324. J. Life Sci. 23, 1420-1427. crossref(new window)

Joh, I. S., Kim, I. H., Kwon, M. J. and Nam, T. J. 2015. Dietary effects of polymannuronate added to hamburger buns on lipid metabolism in rats. Kor. J. Fish, Aquat. Sci. 48, 187-192.

Kim, S. W., Kim, G. D. and Nam, S. W. 2015. Coexpression of alginate lyase with hyperthermophilic archaea chaperonin in E. coli. J. Life Sci. 25, 130-135. crossref(new window)

Kim, Y. Y. and Cho, Y. J. 2000. Studies on physicochemical and biological properties of depolymerized alginate from sea tangle, Laminaria japonicas by thermal decomposition. J. Kor. Fish. Soc. 33, 325-330.

Lee, J. H., Bae, M. J., Kim, Y. C. and Nam, S. W. 2009. Identification and characterization of alginate lyase producing Pseudomonas sp. N7151-6. Kor. J. Microbiol. Biotechnol. 37, 350-354.

Lim, Y. S. and You, B. J. 2006. Effects of hydrolysis pH on distribution of molecular weights of alginate of sea tangle Laminaria japonica. J. Kor. Fish. Soc. 39, 313-317.

Lim, Y. S. and You, B. J. 2007. Effects of hydrolysis temperature on the distribution of the molecular weights of alginates prepared from sea tangle, Laminaria japonica. Kor. Fish. Soc. 40, 187-192.

Paxman, J. R., Richardson, J. C., Dettmar, P. W. and Corfe, B. M. 2008. Alginate reduces the increased uptake of cholesterol and glucose in overweight male subjects: a pilot study. Nutr. Res. 28, 501-505. crossref(new window)

Sellimi, S., Younes, I., Ayed, H. B., Maalehj, H., Montero, V., Rinaudo, M., Dahia, M., Mechicho, T., Hajji, M. and Nasri, M. 2015. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a tunisian brown seaweed. Int. J. Biol. Macromol. 72, 1358-1367. crossref(new window)

Syad, A. N., Shunmugiah, K. P. and Kasi, P. D. 2013. Antioxidant and anti-cholinesterase activity of Sargassum wightii. Pharm. Biol. 51, 1401-1410. crossref(new window)

Thomas, F., Lundqvist, L. C., Jam, M., Jeudy, A., Barbeyron, T., Sandstrom, C., Michel, G. and Czizek, M. 2013. Comparative characterization of two marine alginate lyases from Zobellia galactanivorans reveals distinct modes of action and exquisite adaptation to their natural substrate. J. Biol. Chem. 288, 23021-23037. crossref(new window)

Ueno, M. and Oda, T. 2014. Biological activities of alginate. Adv. Food Nutr. Res. 72, 95-112. crossref(new window)

Yoon, M. O., Lee, S. C., Rhim, J. W. and Kim, J. M. 2004. Comparison of alginic acid yields and viscosity by different extraction conditions from various seaweeds (Laminaria religiosa, Hizikia fusiforme, and Undaria pinnatifida). J. Kor. Soc. Food. Sci. Nutr. 33, 747-752. crossref(new window)