Advanced SearchSearch Tips
Antimicrobial Activities of Corn Silk Extract of Klebsiella pneumoniae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 12,  2015, pp.1399-1407
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.12.1399
 Title & Authors
Antimicrobial Activities of Corn Silk Extract of Klebsiella pneumoniae
Kang, Hyun-Kyung; Bae, Il Kwon;
  PDF(new window)
Klebsiella pneumoniae is found in the normal flora of the skin, mouth, respiratory tract, urinary tract, and intestines in human. However, the stain is opportunistic pathogen, which is the causative agent of community acquired pneumonia. Corn silk has been known to be effective for antimicrobial activity against pathogenic bacteria, including K. pneumoniae, Staphylococcus aureus, Bacillus subtilis, Shigella spp., Salmonella spp., Escherichia coli, Pseudomonas aeruginosa, et al. In this study we focused on the antimicrobial properties of con silk water extract of K. penumoniae. K. pneumoniae isolates K. pneumoniae ATCC 13883 and broad-spectrum β-lactamase (BSBL), exteded-spectrum β-lactamase (ESBL), carbapenemase-producers. Antimicrobial susceptibilities were determined by the disk diffusion method. Searches for bla genes were performed by PCR amplication and direct sequencing. MacConkey agar plate medium was prepared using the corn silk extracts (50% or 100%) instead of distilled water for antimicrobial activity test. The microbial growth inhibitory potential of K. pneumoniae was determined by using the MacConkey agar plate spreading method, and the plate was incubated 18 hr at 37℃. Genes encoding β-lactamases including SHV-1 (n
Antimicrobial activity;corn silk extract;growth inhibitory potential;Klebsiella pneumoniae;pathogenic bacteria;
 Cited by
Amin, A. N., Cerceo, E. A., Deitelzweig, S. B., Pile, J. C., Rosenberg, D. J. and Sherman, B. M. 2014. The hospitalist perspective on treatment of community-acquired bacterial pneumonia. Postgrad. Med. 126, 18-29.

Bae, I. K., Kang, H. K., Jang, I. H., Lee, W., Kim, K., Kim, J. O. and Lee, K. 2015. Detection of carbapenemases in clinical Enterobacteriaceae isolates using the VITEK AST-N202 card. Infect. Chemother. 47, 167-174. crossref(new window)

Bae, I. K., Lee, B. H., Hwang, H. Y., Jeong, S. H., Hong, S. G., Chang, C. L., Kwak, H. S., Kim, H. J. and Youn, H. 2006. A novel ceftazidime-hydrolysing extended- spectrum β-lactamase, CTX-M-54, with a single amino acid substitutionat position 167 in the omega loop. J. Antimicrob. Chemother. 58, 315-319. crossref(new window)

Bennett, C. J., Young, M. N. and Darrington, H. 1995. Differences in urinary tract infection in male and female spinal cord injury patients on intermittent catheterization.Paraplegia. 33, 69-72. crossref(new window)

Bergogne-Berezin, E. 1995. Nosocomial pathogens: new agents, incidence, prevention. Press. Med. 24, 89-97.

Carpenter, J. L. 1990. Klebsiella pulmonary infections: occurrence at one medical center and review. Rev. Infec. Dis. 12, 672-682. crossref(new window)

Clinical and Laboratory Standards Institute. 2014. Performance standards for antimicrobial susceptibility testing; Twenty-Fourth Information Supplement. 24th ed, M100-S24. CLSI, Wayne, PA: Clinical and Laboratory Standards Institute.

D’Andrea, M. M., Arena, F., Pallecchi, L. and Rossolini, G. M. 2013. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int. J. Med. Microbiol. 303, 305-317. crossref(new window)

Jarlier, V., Nicolas, M. H., Fournier, G. and Philippon, A. 1988. Extended-spectrum β-lactamase conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10, 867-868. crossref(new window)

Lee, J. W. and Song, J. H. 2013. Annual report on the causes of death statistics 2012. Statistical Office

Lee, K., Kim, C. K., Yong, D., Jeong, S. H., Yum, J. H., Seo, Y. H., Docquier, J. D. and Chong, Y. 2010. Improved performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J. Microbiol. Methods 83, 149-152. crossref(new window)

Lee, K., Lim, Y. S., Yong, D., Yum, J. H. and Chong, Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41, 4623-4629. crossref(new window)

Lee, Y. H., Cho, B., Bae, I. K., Chang, C. L. and Jeong, S. H. 2006. Klebsiella pneumoniae strains carrying the chromosomal SHV-11 β-lactamase gene produce the plasmid-mediated SHV-12 extended-spectrum β-lactamase more frequently than those carrying the chromosomal SHV-1 β-lactamase gene. J. Antimicrob. Chemother. 57, 1259-1261. crossref(new window)

Lye, W. C., Chan, R. K. T., Lee, E. J. C. and Kumarasinghe, G. 1992. Urinary tract infections in patients with diabetes mellitus. J. Infect. 24, 169-174. crossref(new window)

Michael, J. F., Melanie, A. S., Catherine, A. C., Sunita, S. M., Steadman, S. S., Lisa, A. W. and Wishwa, N. K. 1996. Prognosis and outcomes of patients with community-acquired pneumoniae: a meta-analysis. JAMA 275, 134-141. crossref(new window)

Nessa, F., Ismail, Z. and Mohamed, N. 2012. Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L). Int. J. Biotech. Well. Indus. 1, 115-121.

Paterson, D. L. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control. 34, S20-S28. crossref(new window)

Paterson, D. L. and Bonomo, R. A. 2005. Extended-spectrum β-lactamase: a clinical update. Clin. Microbiol. Rev. 18, 657-686. crossref(new window)

Podschun, R. and Ullmann, U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, toxonomy, typign methods, and pathogenicity factors. Clin. Microbiol. Rev. 11, 589-603.

Ryoo, N. H., Kim, E. C., Hong, S. G., Park, Y. J., Lee, K., Bae, I. K., Song, E. H. and Jeong, S. H. 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J. Antimicrob. Chemother. 56, 698-702. crossref(new window)

Schaberg, D. R., Culver, D. H. and Gaynes, R. P. 1991. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91, 72S-75S.

Queenan, A. M. and Bush, K. 2007. Carbapenemases: the versatile β-lactamases. Clin. Microbiol. Rev. 20, 440-458. crossref(new window)