Advanced SearchSearch Tips
Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 12,  2015, pp.1450-1457
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.12.1450
 Title & Authors
Plant Biomass Degradation and Bioethanol Production Using Hyperthermophilic Bacterium Caldicellulosiruptor bescii
Lee, Han-Seung;
  PDF(new window)
To overcome the depletion of fossil fuels and environmental problems in future, the research and production of biofuels have attracted attention largely. Thermophilic microorganisms produce effective and robust enzymes which can hydrolyze plant biomass and survive under harsh bioprocessing conditions. Caldicellulosiruptor bescii, which can degrade unpretreated plants and grow on them, is the one of the best candidates for consolidated bioprocessing (CBP). C. bescii can hydrolyze pectin efficiently as well as the major plant cell wall components, cellulose and hemicelluloses. Many glycosyl hydrolases and carbohydrate lyases with multidomain structure play an important role in plant biomass decomposition. Recently genetic tools for metabolic engineering of C. bescii have developed and bioethanol production from unpretreated biomass is achieved in C. bescii. Here, we review the recent studies for biomass degradation by C. bescii and bioethanol production in C. bescii in order to provide information about metabolic engineering of themophilic bacteria and biofuel development.
Bioethanol;Caldicellulosiruptor bescii;consolidated bioprocessing (CBP);pectin;plant biomass;
 Cited by
Ai, J. and Tschirner, U. 2010. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. Bioresour. Technol. 101, 215-221. crossref(new window)

Akinosho, H., Yee, K., Close, D. and Ragauskas, A. 2014. The emergence of clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front. Chem. 2, 66.

Basen, M., Schut, G. J., Nguyen, D. M., Lipscomb, G. L., Benn, R. A., Prybol, C. J., Vaccaro, B. J., Poole 2nd, F. L., Kelly, R. M. and Adams, M. W. 2014. Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proc. Natl. Acad. Sci. USA 111, 17618-17623. crossref(new window)

Biswal, A. K., Soeno, K., Gandla, M. L., Immerzeel, P., Pattathil, S., Lucenius, J., Serimaa, R., Hahn, M. G., Moritz, T. and Jönsson, L. J. 2014. Aspen pectate lyase PtxtPL1-27 mobilizes matrix polysaccharides from woody tissues and improves saccharification yield. Biotechnol. Biofuels 7, 11. crossref(new window)

Blumer-Schuette, S. E., Brown, S. D., Sander, K. B., Bayer, E. A., Kataeva, I., Zurawski, J. V., Conway, J. M., Adams, M. W. and Kelly, R. M. 2014. Thermophilic lignocellulose deconstruction. FEMS Microbiol. Rev. 38, 393-448. crossref(new window)

Blumer-Schuette, S. E., Lewis, D. L. and Kelly, R. M. 2010. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomassdegrading genus caldicellulosiruptor. Appl. Environ. Microbiol. 76, 8084-8092. crossref(new window)

Brunecky, R., Alahuhta, M., Xu, Q., Donohoe, B. S., Crowley, M. F., Kataeva, I. A., Yang, S. J., Resch, M. G., Adams, M. W., Lunin, V. V., Himmel, M. E. and Bomble, Y. J. 2013. Revealing nature's cellulase diversity: The digestion mechanism of caldicellulosiruptor bescii CelA. Science 342, 1513-1516. crossref(new window)

Carere, C. R., Rydzak, T., Verbeke, T. J., Cicek, N., Levin, D. B. and Sparling, R. 2012. Linking genome content to biofuel production yields: A meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol. 12, 295-2180-12-295. crossref(new window)

Cha, M., Chung, D., Elkins, J. G., Guss, A. M. and estpheling, J. 2013. Metabolic engineering of caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol. Biofuels 6, 85. crossref(new window)

Chen, F. and Dixon, R. A. 2007. Lignin modification improvesfermentable sugar yields for biofuel production. Nat. Biotechnol. 25, 759-761. crossref(new window)

Chung, D., Cha, M., Farkas, J. and Westpheling, J. 2013. Construction of a stable replicating shuttle vector for aldicellulosiruptor species: Use for extending genetic methodologies to other members of this genus. PLoS One 8, e62881. crossref(new window)

Chung, D., Cha, M., Guss, A. M. and Westpheling, J. 2014. Direct conversion of plant biomass to ethanol by engineered caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. USA 111, 8931-8936. crossref(new window)

Chung, D., Farkas, J., Huddleston, J. R., Olivar, E. and Westpheling, J. 2012. Methylation by a unique alpha-class N4-cytosine methyltransferase is required for DNA transformation of caldicellulosiruptor bescii DSM6725. PLoS One 7, e43844. crossref(new window)

Chung, D., Farkas, J. and Westpheling, J. 2013. Overcoming restriction as a barrier to DNA transformation in aldicellulosiruptor species results in efficient marker replacement. Biotechnol. Biofuels 6, 5. crossref(new window)

Chung, D., Pattathil, S., Biswal, A. K., Hahn, M. G., Mohnen, D. and Westpheling, J. 2014. Deletion of a gene cluster encoding pectin degrading enzymes in caldicellulosiruptor bescii reveals an important role for pectin in plant biomass recalcitrance. Biotechnol. Biofuels 7, 147. crossref(new window)

Chung, D., Young, J., Bomble, Y. J., Vander Wall, T. A., Groom, J., Himmel, M. E. and Westpheling, J. 2015. Homologous expression of the caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated. PLoS One 10, e0119508. crossref(new window)

Chung, D. H., Huddleston, J. R., Farkas, J. and Westpheling, J. 2011. Identification and characterization of CbeI, a novel thermostable restriction enzyme from caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes. J. Ind. Microbiol. Biotechnol. 38, 1867-1877. crossref(new window)

Clausen, A., Mikkelsen, M. J., Schröder, I. and Ahring, B. K. 2004. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium anaerocellum thermophilum. Plasmid 52, 131-138. crossref(new window)

Dam, P., Kataeva, I., Yang, S. J., Zhou, F., Yin, Y., Chou, W., Poole 2nd, F. L., Westpheling, J., Hettich, R., Giannone, R., Lewis, D. L., Kelly, R., Gilbert, H. J., Henrissat, B., Xu, Y. and Adams, M. W. 2011. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39, 3240-3254. crossref(new window)

Demirbas, A. 2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energ. Convers. Manage. 49, 2106-2116. crossref(new window)

Farkas, J., Chung, D., Cha, M., Copeland, J., Grayeski, P. and Westpheling, J. 2013. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by caldicellulosiruptor bescii. J. Ind. Microbiol. Biotechnol. 40, 41-49. crossref(new window)

Gibbs, M. D., Elinder, A. U., Reeves, R. A. and Bergquist, P. L. 1996. Sequencing, cloning and expression of a β-1, 4-mannanase gene, manA, from the extremely thermophilicanaerobic bacterium, caldicellulosiruptor Rt8B. 4. FEMS Microbiol. Lett. 141, 37-43.

Han, D., Norris, S. M. and Xu, Z. 2012. Construction and transformation of a thermotoga-E. coli shuttle vector. BMC Biotechnol. 12, 2-6750-12-2.

Han, D., Xu, H., Puranik, R. and Xu, Z. 2014. Natural transformation of thermotoga sp. strain RQ7. BMC Biotechnol. 14, 39. crossref(new window)

Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. and Foust, T. D. 2007. Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315, 804-807. crossref(new window)

Jones, C. S. and Mayfield, S. P. 2012. Algae biofuels: Versatility for the future of bioenergy. Curr. Opin. Biotechnol. 23, 346-351. crossref(new window)

Kataeva, I., Foston, M. B., Yang, S., Pattathil, S., Biswal, A. K., Poole II, F. L., Basen, M., Rhaesa, A. M., Thomas, T. P. and Azadi, P. 2013. Carbohydrate and lignin are simultaneouslysolubilized from unpretreated switchgrass by microbial action at high temperature. Energy Environ. Sci. 6, 2186-2195. crossref(new window)

Kataeva, I. A., Yang, S. J., Dam, P., Poole 2nd, F. L., Yin, Y., Zhou, F., Chou, W. C., Xu, Y., Goodwin, L., Sims, D. R., Detter, J. C., Hauser, L. J., Westpheling, J. and Adams, M. W. 2009. Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “anaerocellum thermophilum” DSM 6725. J. Bacteriol. 191, 3760-3761. crossref(new window)

Kim, S. and Dale, B. E. 2004. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26, 361-375. crossref(new window)

Lionetti, V., Francocci, F., Ferrari, S., Volpi, C., Bellincampi, D., Galletti, R., D’Ovidio, R., De Lorenzo, G. and Cervone, F. 2010. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. USA 107, 616-621. crossref(new window)

Lipscomb, G. L., Stirrett, K., Schut, G. J., Yang, F., Jenney Jr, F. E., Scott, R. A., Adams, M. W. and Westpheling, J. 2011. Natural competence in the hyperthermophilic archaeon pyrococcus furiosus facilitates genetic manipulation: Construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Appl. Environ. Microbiol. 77, 2232-2238. crossref(new window)

Loque, D., Scheller, H. V. and Pauly, M. 2015. Engineering of plant cell walls for enhanced biofuel production. Curr. Opin. Plant Biol. 25, 151-161. crossref(new window)

Mai, V., Lorenz, W. W. and Wiegel, J. 1997. Transformation of thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol. Lett. 148, 163-167. crossref(new window)

Mohnen, D. 2008. Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266-277. crossref(new window)

Petersen, T. N., Brunak, S., von Heijne, G. and Nielsen, H. 2011. SignalP 4.0: Discriminating signal peptides from ransmembrane regions. Nat. Methods 8, 785-786. crossref(new window)

Riederer, A., Takasuka, T. E., Makino, S., Stevenson, D. M., Bukhman, Y. V., Elsen, N. L. and Fox, B. G. 2011. Global gene expression patterns in clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl. Environ. Microbiol. 77, 1243-1253. crossref(new window)

Sato, T., Fukui, T., Atomi, H. and Imanaka, T. 2003. Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon thermococcus kodakaraensis KOD1. J. Bacteriol. 185, 210-220. crossref(new window)

Sato, T., Fukui, T., Atomi, H. and Imanaka, T. 2005. mprovedand versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon thermococcus kodakaraensis. Appl. Environ. Microbiol. 71, 3889-3899. crossref(new window)

Uppugundla, N., da Costa Sousa, L., Chundawat, S. P., Yu, X., Simmons, B., Singh, S., Gao, X., Kumar, R., Wyman, C. E. and Dale, B. E. 2014. A comparative study of ethanol production using dilute acid, ionic liquid and AFEX™ pretreated corn stover. Biotechnol. Biofuels 7, 72. crossref(new window)

VanFossen, A. L., Ozdemir, I., Zelin, S. L. and Kelly, R. M. 2011. Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium caldicellulosiruptor saccharolyticus. Biotechnol. Bioeng. 108, 1559-1569. crossref(new window)

Yang, S. J., Kataeva, I., Hamilton-Brehm, S. D., Engle, N. L., Tschaplinski, T. J., Doeppke, C., Davis, M., Westpheling, J. and Adams, M. W. 2009. Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “anaerocellum thermophilum” DSM 6725. Appl. Environ. Microbiol. 75, 4762-4769. crossref(new window)

Yang, S. J., Kataeva, I., Wiegel, J., Yin, Y., Dam, P., Xu, Y., Westpheling, J. and Adams, M. W. 2010. Classification of ‘anaerocellum thermophilum’ strain DSM 6725 as caldicellulosiruptor bescii sp. nov. Int. J. Syst. Evol. Microbiol. 60, 2011-2015. crossref(new window)

Young, J., Chung, D., Bomble, Y. J., Himmel, M. E. and Westpheling, J. 2014. Deletion of caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass. Biotechnol. Biofuels 7, 142. crossref(new window)

Zhang, Y. H., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R. and Lynd, L. R. 2007. Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97, 214-223. crossref(new window)