JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Solvent Tolerant Bacteria and Their Potential Use
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 12,  2015, pp.1458-1469
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.12.1458
 Title & Authors
Solvent Tolerant Bacteria and Their Potential Use
Joo, Woo Hong;
  PDF(new window)
 Abstract
Many organic solvent-tolerant bacteria have been isolated from all environments such as soil, waste-water, even deep sea after first isolation report of organic solvent-tolerant bacterium. Most organic solvent- tolerant isolates have been determined to be Gram-negative bacteria, because Gram-negative bacteria have inherent tolerance property toward hostile organic solvents more than Gram-positive bacteria. The mechanisms of organic solvent tolerance have been elucidated extensively using mainly organic solvent-tolerant Gram-negative bacteria. The solvent-tolerance mechanisms in Gram-positive bacteria can be found in comparatively recent research. Organic solvents exhibited different toxicity depending on the solvent, and the tolerance levels of organic solvent-tolerant bacteria toward organic solvents were also highly changeable among species and strains. Therefore, organic solvent-tolerant bacteria could coped with solvent toxicity and adapted to solvent stress through the multifactorial and multigenic adaptative strategies. They could be survived even in the hyper concentrations of organic solvents by mechanisms which include: changes in cell morphology and cell behaviour, cell surface modifications, cell membrane adaptations, solvent excretion pumps, chaperones and anti-oxidative response. The aim of this work is to review the representative solvent tolerant bacteria and the adaptative and tolerance strategies toward organic solvents in organic solvent-tolerant bacteria, and their potential industrial and environmental impact.
 Keywords
Biocatalysis;biodegradation;solvent-tolerance;solvent-tolerant bacteria;
 Language
Korean
 Cited by
 References
1.
Abe, A., Inoue, A., Usami, R., Moriya, K. and Horikoshi, K. 1995. Properties of newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J. Marine Biotechnol. 2, 182-186.

2.
Aizawa, T., Neilan, B. A., Couperwhite, I., Urai, M., Anzai, H., Iwabuchi, N., Nakajima, M. and Sunairi, M. 2005. Relationship between extracellular polysaccharide and benzene tolerance of Rhodococcus sp. 33. Actinomycetologica 19, 1-6. crossref(new window)

3.
Aono, R. and Kobayashi, H. 1997. Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl. Environ. Microbiol. 63, 3637-3642.

4.
Baumgarten, T., Vazquez, J., Bastisch, C., Veron, W., Feuilloley, M. G., Nietzsche, S., Wick, L. Y. and Heipieper, H. J. 2012. Alkanols and chlorophenols cause different physiologicaladaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl. Microbiol. Biotechnol. 93, 837-845. crossref(new window)

5.
Baumgarten, T., Sperling, S., Seifert, J., von Bergen, M., Steiniger, F., Wick, L. Y. and Heipieper, H. J. 2012. Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl. Environ. Microbiol.78, 6217-6224. crossref(new window)

6.
Bustard, M. T., Whiting, S., Cowan, D. A. and Wright, P. C. 2002. Biodegradation of high-concentration isopropanol by a solvent-tolerant thermophile, Bacillus pallidus. Extremophiles 6, 319-323. crossref(new window)

7.
Choi, H. J., Kim, S. A., Kim, D. W., Moon, J. Y., Jeong, Y. K. and Joo, W. H. 2008. Characterization of Pseudomonas sp. BCNU 171 tolerant to organic solvents. J. Basic Microbiol. 48, 473-479. crossref(new window)

8.
Choi, H. J., Hwang, M. J., Jeong, Y. K. and Joo, W. H. 2011. Evaluation of the Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5005. J. Life Sci. 21, 700-705. crossref(new window)

9.
Choi, H. J., Hwang, M. J., Kim, B. S., Jeong, Y. K. and Joo, W. H. 2012. Potential of Organic Solvent Tolerant Bacillus sp. BCNU 5006. KSBB J. 27, 61-66. crossref(new window)

10.
Choi, H. J., Hwang, M. J., Seo, J. Y. and Joo, W. H. 2013. Organic Solvent-tolerant Lipase from Pseudomonas sp. BCNU 154. J. Life Sci. 23, 1246-1251. crossref(new window)

11.
Choi, H. J., Seo, J. Y., Hwang, S. M., Lee, Y. I., Jeong, Y. K., Moon, J. Y. and Joo, W. H. 2013. Isolation and characterization of BTEX tolerant and degrading Pseudomonas putida BCNU 106. Biotechnol. Bioprocess Eng. 18, 1000-1007. crossref(new window)

12.
Choi, H. J., Kwon, G. S. and Joo, W. H. 2014. Production of Indigoid Pigments by Persolvent Fermentation with Pseudomonas putida BCNU 106. J. Life Sci. 24, 81-85. crossref(new window)

13.
Choi, H. J., Yoo, J. S., Jeong, Y. K. and Joo, W. H. 2014. Involvement of antioxidant defense system in solvent tolerance of Pseudomonas putida BCNU 106. J. Basic Microbiol. 54, 945-950. crossref(new window)

14.
Cruden, D. L., Wolfram, J. H., Rogers, R. T. and Gibson, D. T. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58, 2723–2729.

15.
Dandavate, V., Jinjala, J., Keharia, H. and Madamwar, D. 2009. Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour. Technol. 100, 3374-3381. crossref(new window)

16.
De Carvalho, C. C. C, R, Da Cruz, A. A., Pons, M. N., Pinheiro, H. M., Cabral, J., Da Fonseca, M. M. R., Ferreira, B. S. and Fernandes, P. 2004. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc. Res. Tech. 64, 215-222. crossref(new window)

17.
De Carvalho, C. C. C. R. and Ds Fonseca, M. M. R. 2005. Degradation of hydrocarbons and alcohols at different emperatures and salinities by Rhodococcus erythropolis DCL14. FEMS Microbiol. Ecol. 51, 389-399. crossref(new window)

18.
De Carvalho, C. C. C. R., Parreño-Marchante, B., Neumann, G., Da Fonseca, M. M. R., and Heipieper, H. J. 2005. Adaptation of Rhodococcus erythropolis DCL14 to growth on n-alkanes, alcohols and terpenes. Appl. Microbiol. Biotechnol. 67, 383-388. crossref(new window)

19.
De Bont, J. A. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16, 493-499. crossref(new window)

20.
Diefenbach, R., Heipieper, H. J. and Keweloh, H. 1992. The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl. Microbiol. Biotechnol. 38, 382-387.

21.
Domínguez-Cuevas, P., González-Pastor, J. E., Marqués, S., Ramos, J. L. and de Lorenzo, V. 2006. Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J. Biol. Chem. 281, 11981-11991. crossref(new window)

22.
Duque, E., Rodríguez-Herva, J. J., de la Torre, J., Domínguez-Cuevas, P., Muñoz-Rojas, J. and Ramos, J. L. 2007. The RpoT regulon of Pseudomonas putida DOT-T1E and its role in stress endurance against solvents. J. Bacteriol. 189, 207-219. crossref(new window)

23.
Essam, T., Amin, M. A., El Tayeb, O., Mattiasson, B. and Guieysse, B. 2010. Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1. J. Hazard. Mater. 173, 783-788. crossref(new window)

24.
Geok, L. P., Razak, C. N. A., Rahman, R. N. Z. A., Basri, M. and Salleh, A. B. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13, 73-77. crossref(new window)

25.
Hartmans S., van der Werf M. J. and de Bont J. A. M. 1990. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl. Environ. Microbiol. 56, 1347-1351.

26.
Hayashi, S., Kobayashi, T. and Honda, H. 2003. Simple and rapid cell growth assay using tetrazolium violet coloring method or screening of organic solvent tolerant bacteria. J. Biosci. Bioeng. 96, 360-363. crossref(new window)

27.
Heerema, L., Wierckx, N., Roelands, M., Hanemaaijer, J. H., Goetheer, E., Verdoes, D. and Keurentjes, J. 2011. In situ phenol emoval from fed-batch fermentations of solvent tolerant Pseudomonas putida S12 by pertraction. Biochem. Eng. J. 53, 245-252. crossref(new window)

28.
Heipieper, H. J., Loffeld, B., Keweloh, H. and de Bont, J. A. 1995. The cis/trans isomerisation of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere 30, 1041-1051. crossref(new window)

29.
Horikoshi, K. and Bull, A. T. 2011. Extremophiles handbook, pp. 3-15, Tokyo, Japan, Springer.

30.
Hun, C. J., Rahman, R. N. Z. A., Salleh, A. B. and Basri, M. 2003. A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem. Eng. J. 15, 147-151. crossref(new window)

31.
Inoue, A. and Horikoshi, K. 1989. A Pseudomonas thrives in igh concentrations of toluene. Nature 338, 264-266. crossref(new window)

32.
Inoue, A. and Horikoshi, K. 1991. Estimation of solvent-tolerance of bacteria by the solvent parameter log P. J. Ferment. Bioeng. 71, 194-196. crossref(new window)

33.
Isken, S. and De Bont, J. A. 1996. Active efflux of toluene in solvent-resistant bacterium. J. Bacteriol. 178, 6056-6058.

34.
Isar, J. and Rangaswamy, V. 2012. Improved n-butanol roduction by solvent tolerant Clostridium beijerinckii. Biomass Bioenergy 37, 9-15. crossref(new window)

35.
Ji, Q., Xiao, S., He, B. and Liu, X. 2010. Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa LX1 and its application for biodiesel production. J. Mol. Catal., B Enzym. 66, 264-269. crossref(new window)

36.
Joshi, C. and Khare, S. K. 2013. Purification and haracterization of Pseudomonas aeruginosa lipase produced by SF of deoiled Jatropha seed cake. Biocatal. Agric. Biotechnol. 2, 32-37.

37.
Joshi, C., Mathur, P. and Khare, S. K. 2011. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid- state fermentation of deoiled Jatropha curcas seed cake. Bioresour. Technol. 102, 4815-4819. crossref(new window)

38.
Junker, F. and Ramos, J. L. 1999. Involvement of the cis/trans Isomerase Cti in Solvent Resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181, 5693-5700.

39.
Kang, H. J., Heo, D. H., Choi, S. W., Kim, K. N., Shim, J., Kim, C. W., Sung, H. C. and Yun, C. W. 2007. Functional characterization of Hsp33 protein from Bacillus psychrosaccharolyticus; additional function of HSP33 on resistance to solvent stress. Biochem. Biophys. Res. Commun. 58, 743- 750.

40.
Kawaguchi, H., Kobayashi, H. and Sato, K. 2012. Metabolic engineering of hydrophobic Rhodococcus opacus for iodesulfurization in oil–water biphasic reaction mixtures. J. Biosci. Bioeng. 113, 360-366. crossref(new window)

41.
Kieboom, J., Dennis, J. J., de Bont, J. A. and Zylstra, G. J. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273, 85-91. crossref(new window)

42.
Kobayashi, H., Takami, H., Hirayama, H., Kobata, K., Usami, R. and Horikoshi, K. 1999. Outer Membrane Changes in a Toluene-Sensitive Mutant of Toluene-Tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181, 4493-4498.

43.
Koopman, F., Wierckx, N., de Winde, J. H. and Ruijssenaars, H. J. 2010. Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid. Bioresour. Technol. 101, 6291-6296. crossref(new window)

44.
Lacal, J., Muñoz‐Martínez, F., Reyes‐Darías, J. A., Duque, E., Matilla, M., Segura, A., Ortega Calvo, J. J., Jiménez-Sanchez, C., Krell, T. and Ramos, J. L. 2011. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ. Microbiol. 13, 1733-1744. crossref(new window)

45.
Matsumoto, M., de Bont, J. A. and Isken, S. 2002. Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J. Biosci. Bioeng. 94, 45-51. crossref(new window)

46.
Moriya, K. and Horikoshi, K. 1993. Isolation of a benzenetolerant bacterium and its hydrocarbon degradation. J. Ferment. Bioeng. 76, 168-173. crossref(new window)

47.
Moriya, K. and Horikoshi, K. 1993. A benzene-tolerant bacterium utilizing sulfur compounds isolated from deep sea. J. Ferment. Bioeng. 76, 397-399. crossref(new window)

48.
Moriya, K., Yanagitani, S., Usami, R. and Horikoshi, K. 1995. Isolation and some properties of an organic-solvent-tolerant marine bacterium degrading cholesterol. J. Mar. Biotechnol. 2, 131-133.

49.
Na, K. S., Kuroda, A., Takiguchi, N., Ikeda, T., Ohtake, H. and Kato, J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99, 378-382. crossref(new window)

50.
Navacharoen, A. and Vangnai, A. S. 2011. Biodegradation of diethyl phthalate by an organic-solvent-tolerant Bacillus subtilis strain 3C3 and effect of phthalate ester coexistence. Int. Biodeterior. Biodegradation 65, 818-826. crossref(new window)

51.
Nielsen, L. E., Kadavy, D. R., Rajagopal, S., Drijber, R. and Nickerson, K. W. 2005. Survey of extreme solvent tolerance in gram-positive cocci: membrane fatty acid changes in Staphylococcus haemolyticus grown in toluene. Appl. Environ. Microbiol. 71, 5171-5176. crossref(new window)

52.
Neumann, G., Veeranagouda, Y., Karegoudar, T. B., Sahin, Ö., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U. and Heipieper, H. J. 2005. Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles 9, 163-168. crossref(new window)

53.
Neumann, G., Cornelissen, S., van Breukelen, F., Hunger, S., Lippold, H., Loffhagen, N., Wick, L. Y. and Heipieper, H. J. 2006. Energetics and surface properties of Pseudomonas putida DOT-T1E in a two-phase fermentation system with 1-decanol as second phase. Appl. Environ. Microbiol. 72, 4232-4238. crossref(new window)

54.
Neumann, G., Kabelitz, N., Zehnsdorf, A., Miltner, A., ippold,H., Meyer, D., Schmid, A. and Heipieper, H. J. 2005. Prediction of the adaptability of Pseudomonas putida DOT-T1E to a second phase of a solvent for economically sound two-phase biotransformations. Appl. Environ. Microbiol. 71, 6606-6612. crossref(new window)

55.
Ogino, H., Yasui, K., Shiotani, T., Ishihara, T. and Ishikawa, H. 1995. Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl. Environ. Microbiol. 61, 4258-4262.

56.
Paje, M. L. F. and Neilan, B. A. 1997. A Rhodococcus peciesthat thrives on medium saturated with liquid benzene. Microbiology 143, 2975-2981. crossref(new window)

57.
Panke, S., Witholt, B., Schmid, A. and Wubbolts, M.G. 1998. Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Appl. Environ. Microbiol. 64, 2032-2043.

58.
Park, J. B., Bühler, B., Panke, S., Witholt, B. and Schmid, A. 2007. Carbon metabolism and product inhibition determine the epoxidation efficiency of solvent tolerant Pseudomonas sp. strain VLB120℃. Biotechnol. Bioeng. 98, 1219-1229. crossref(new window)

59.
Pepi, M., Heipieper, H. J., Fischer, J., Ruta, M., Volterrani, M. and Focardi, S. E. 2008. Membrane fatty acids adaptive profile in the simultaneous presence of arsenic and toluene in Bacillus sp. ORAs2 and Pseudomonas sp. ORAs5 strains. Extremophiles 12, 343-349. crossref(new window)

60.
Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Völker, U. and Hecker, M. 2001. Global analysis of the general stress response of Bacillus subtilis. J. Bacteriol. 183, 5617-5631. crossref(new window)

61.
Pinkart, H. C., Wolfram, J. W., Rogers, R. and White, D. C. 1996. Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl. Environ. Microbiol. 62, 1129-1132.

62.
Qu, Y., Pi, W., Ma, F., Zhou, J. and Zhang, X. 2010. Influence and optimization of growth substrates on indigo formation by a novel isolate Acinetobacter sp. PP-2. Bioresour. Technol. 101, 4527-4532. crossref(new window)

63.
Ramos J. L., Duque E., Huertas M. J. and Haïdour A. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177, 3911-3916.

64.
Ramos, J. L., Duque, E., Godoy, P. and Segura, A. 1998. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180, 3323-3329.

65.
Ramos J. L., Duque E., Rodríguez-Herva J. J., Godoy P., Haïdour A., Reyes F. and Fernández-Barrero A. 1997. Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 272, 3887-3890. crossref(new window)

66.
Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-González, M. I., Rojas, A. Teran, W. and Segura, A. 2002. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743-768. crossref(new window)

67.
Rojas, A., Duque, E., Mosqueda, G., Golden, G., Hurtado, A., Ramos, J. L. and Segura, A. 2001. Three Efflux Pumps Are Required to Provide Efficient Tolerance to Toluene in Pseudomonas putida DOT-T1E. J. Bacteriol. 183, 3967-3973. crossref(new window)

68.
Roma-Rodrigues, C., Santos, P. M., Benndorf, D., Rapp, E. and Sá-Correia, I. 2010. Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. J. Proteomics 73, 1461-1478. crossref(new window)

69.
Ruijssenaars, H. J., Sperling, E. M., Wiegerinck, P. H., Brands, F. T., Wery, J. and de Bont, J. A. 2007. Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J. Biotechnol. 131, 205-208. crossref(new window)

70.
Sardessai, Y. and Bhosle, S. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153, 263-268. crossref(new window)

71.
Sardessai, Y. and Bhosle, S. 2003. Isolation of an organic-solvent-tolerant cholesterol-transforming Bacillus species, BC1, from coastal sediment. Mar. Biotechnol. 5, 116-118.

72.
Sardessai, Y. N. and Bhosle, S. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog. 20, 655-660. crossref(new window)

73.
Segura, A., Godoy, P., van Dillewijn, P., Hurtado, A., Arroyo, N., Santacruz, S. and Ramos, J. L. 2005. Proteomic analysis eveals the participation of energy-and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J. Bacteriol. 187, 5937-5945. crossref(new window)

74.
Segura, A., Molina, L., Fillet, S., Krell, T., Bernal, P., Muñoz- Rojas, J. and Ramos, J. L. 2012. Solvent tolerance in ramnegativebacteria. Curr. Opin. Biotechnol. 23, 415-421. crossref(new window)

75.
Sikkema, J., De Bont, J. A. and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201-222.

76.
Tomas, C. A., Welker, N. E. and Papoutsakis, E. T. 2003. Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl. Environ. Microbiol. 69, 4951-4965. crossref(new window)

77.
Torres, S., Baigorí, M. D. and Castro, G. R. 2005. Effect of hydroxylic solvents on cell growth, sporulation, and esterase production of Bacillus licheniformis S-86. Process Biochem. 40, 2333-2338. crossref(new window)

78.
Torres, S., Baigorí, M. D., Swathy, S. L., Pandey, A. and Castro, G. R. 2009. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454-460. crossref(new window)

79.
Torres, S., Pandey, A. and Castro, G. R. 2011. Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. Biotechnol. Adv. 29, 442-452. crossref(new window)

80.
Uzel, A. and Ozdemir, G. 2009. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08. Bioresour. Technol. 100, 5. crossref(new window)

81.
Veeranagouda, Y., Karegoudar, T. B., Neumann, G. and Heipieper, H. J. 2006. Enterobacter sp. VKGH12 growing with n‐butanol as the sole carbon source and cells to which the alcohol is added as pure toxin show considerable differences in their adaptive responses. FEMS Microbiol. Lett. 254, 48-54. crossref(new window)

82.
Volkers, R. J., De Jong, A. L., Hulst, A. G., Van Baar, B. L., De Bont, J. A. and Wery, J. 2006. Chemostat‐based proteomic analysis of toluene‐affected Pseudomonas putida S12. Environ. Microbiol. 8, 1674-1679. crossref(new window)

83.
Wang, L., Qiao, N., Sun, F. and Shao, Z. 2008. Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 12, 335-342. crossref(new window)

84.
Wang, S., Liu, G., Zhang, W., Cai, N., Cheng, C., Ji, Y., Sun, L,m Zhan, J. and Yuan, S. 2014. Efficient glycosylation of puerarin by an organic solvent-tolerant strain of Lysinibacillus fusiformis. Enzyme Microb. Technol. 57, 42-47. crossref(new window)

85.
Watanabe, R. and Doukyu, N. 2014. Improvement of organic solvent tolerance by disruption of the lon gene in Escherichia coli. J. Biosci. Bioeng. 118, 139-144. crossref(new window)

86.
Weber, F. J., Ooijkaas, L. P., Schemen, R. M., Hartmans, S. and de Bont, J. A. 1993. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59, 3502-3504.

87.
Weber, F. J. and de Bont, J. A. 1996. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on embranes. Biochim. Biophys. Acta 1286, 225-245. crossref(new window)

88.
Wick, L., De Munain, A., Springael, D. and Harms, H. 2002. Responses of Mycobacterium sp. LB501T to the low ioavailabilityof solid anthracene. Appl. Microbiol. Biotechnol. 58, 378-385. crossref(new window)

89.
Wierckx, N. J., Ballerstedt, H., de Bont, J. A. and Wery, J. 2005. Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71, 8221-8227. crossref(new window)

90.
Williams, T. I., Combs, J. C., Lynn, B. C. and Strobel, H. J. 2007. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74, 422-432. crossref(new window)

91.
Wu, X., Chu, J., Wu, B., Zhang, S. and He, B. 2013. An efficient novel glycosylation of flavonoid by β-fructosidase resistant to hydrophilic organic solvents. Bioresour. Technol. 129, 659-662. crossref(new window)

92.
Yamashita, S., Satoi, M., Iwasa, Y., Honda, K., Sameshima, Y., Omasa, T., Kato, J. and Ohtake, H. 2007. Utilization of hydrophobic bacterium Rhodococcus opacus B-4 as whole-cellcatalyst in anhydrous organic solvents. Appl. Microbiol. Biotechnol. 74, 761-767. crossref(new window)

93.
Yao, C., Cao, Y., Wu, S., Li, S. and He, B. 2013. An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01: purification, characteristics and application for chiral resolution of mandelic acid. J. Mol. Catal., B Enzym. 85, 105-110.

94.
Zahir, Z., Seed, K. D. and Dennis, J. J. 2006. Isolation and characterization of novel organic solvent-tolerant bacteria. Extremophiles 10, 129-138. crossref(new window)

95.
Zhang, S., Zhou, Z., Yao, Z. and He, B. 2013. Efficient roduction of skimmin and 6′-succinylskimmin from umbelliferone by organic solvent-tolerant Bacillus licheniformis ZSP01 using nitrogen sources regulation strategy. Biochem. Eng. J. 71, 105-110. crossref(new window)