JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.121-129
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.121
 Title & Authors
Homology Modeling and Characterization of Oligoalginate Lyase from the Alginolytic Marine Bacterium Sphingomonas sp. Strain MJ-3
Kim, Hee Sook;
  PDF(new window)
 Abstract
Alginates are found in marine brown seaweeds and in extracellular biofilms secreted by some bacteria. Previously, we reported an oligoalginate lyase from Sphingomonas sp. MJ-3 (MJ3-Oal) that had an exolytic activity and protein sequence homology with endolytic polymannuronate (polyM) lyase in the N-terminal region. In this study, the MJ3-Oal was tested for both exolytic and endolytic activity by homology modeling using the crystal structure of Alg17c from Saccharophagus degradans 2-40T. The tyrosine residue at the position, which possibly formed a hydrogen bond with the substrate, was mutated to phenylalanine. The FPLC profiles showed that MJ3-Oal degraded alginate quickly to monomers as a final product through the oligmers, whereas the Tyr426Phe mutant showed only exolytic alginate lyase activity. -NMR spectra also showed that MJ3-Oal degraded the endoglycosidic bond of polyM and polyMG (polymannuronate-guluronate) blocks. These results indicate that oligoalginate lyase from Sphingomonas sp. MJ-3 probably catalyzes the degradation of both exo- and endo-glycosidic bonds of alginate.
 Keywords
Endolytic activity;exolytic activity;homology modeling;oligoalginate lyase;
 Language
Korean
 Cited by
 References
1.
Akiyama, H., Endo, T., Nakakita, R., Murata, K., Yonemoto, Y. and Okayama, K. 1992. Effect of depolymerized alginates on the growth of bifidobacteria. Biosci. Biotechnol. Biochem. 56, 355-356. crossref(new window)

2.
Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. 2006. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201. crossref(new window)

3.
Draget, K. I., Smidsrod, O. and Skjak-Braek, G. 2005. Alginates from Algae. In Anonymous Biopolymers Online: Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

4.
Gacesa, P. 1998. Bacterial alginate biosynthesis - recent progress and future prospects. Microbiology 14, 1133-1143.

5.
Haug, A., Larsen, B. and Smidsrot, O. 1966. A study of the constitution of alginic acid by partial acid hydrolysis. Acta. Chem. Scand. 20, 183-190. crossref(new window)

6.
Hutcheson, S. W., Zhang, H. and Suvorov, M. 2011. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Marine Drugs 9, 645-665. crossref(new window)

7.
Hutcheson, S. W., Zhang, H. and Suvorov, M. 2011. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Marine Drugs 9, 645-665. crossref(new window)

8.
Kam, N., Park, Y. J., Lee, E. Y. and Kim, H. S. 2011. Molecular identification of a polyM-specific alginate lyase from pseudomonas sp. strain KS-408 for degradation of glycosidic linkages between two mannuronates or mannuronate and guluronate in alginate. Can. J. Microbiol. 57, 1032-1041. crossref(new window)

9.
Kim, H. S., Lee, C. G. and Lee, E. Y. 2011. Alginate lyase: Structure, property and application. Biotech. Bioproc. Eng. 16, 843-851. crossref(new window)

10.
Kim, H. S., Lee, C. G. and Lee, E. Y. 2011. Alginate lyase: Structure, property and application. Biotech. Bioproc. Eng. 16, 843-851. crossref(new window)

11.
Kim, H. T., Chung, J. H., Wang, D., Lee, J., Woo, H. C., Choi, I. G. and Kim, K. H. 2012. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl. Microbiol. Biotechnol. 93, 2233-2239. crossref(new window)

12.
Lee, S. I., Choi, S. H., Lee, E. Y. and Kim, H. S. 2012. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2. Appl. Microbiol. Biotechnol. 95, 1643-1653. crossref(new window)

13.
Miyake, O., Hashimoto, W. and Murata, K. 2003. An exotype alginate lyase in Sphingomonas sp. A1: Overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr. Purif. 29, 33-41. crossref(new window)

14.
Momma, K., Okamoto, M., Mishima, Y., Mori, S., Hashimoto, W. and Murata, K. 2000. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J. Bacteriol. 182, 3998-4004. crossref(new window)

15.
Ochiai, A., Hashimoto, W. and Murata, K. 2006. A biosystem for alginate metabolism in Agrobacterium tumefaciens strain C58: Molecular identification of Atu3025 as an exotype family PL-15 alginate lyase. Res. Microbiol. 157, 642-649. crossref(new window)

16.
Park, D., Jagtap, S. and Nair, S. K. 2014. Structure of a PL17 family alginate lyase demonstrates functional similarities among exotype depolymerases. J. Biol. Chem. 289, 8645-8655. crossref(new window)

17.
Park, H. H., Kam, N., Lee, E. Y. and Kim, H. S. 2011. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar. Biotechnol. 14, 189-202

18.
Park, Y. J., Chu, Y. J., Shin, Y. H., Lee, E. Y. and Kim, H. S. 2014. Molecular cloning and characterization of a novel acetylalginate esterase gene in alg operon from Sphingomonas sp. MJ-3. Appl. Microbiol. Biotechnol. 98, 2145-2154. crossref(new window)

19.
Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. 2004. UCSF chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. crossref(new window)

20.
Ryu, M. and Lee, E. Y. 2011. Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. J. Ind. Eng. Chem. 17, 853-858. crossref(new window)

21.
Weiner, R. M., Taylor, L. E., Henrissat, B., Hauser, L., Land, M., Coutinho, P. M., Rancurel, C., Saunders, E. H., Longmire, A. G., Zhang, H., Bayer, E. A., Gilbert, H. J., Larimer, F., Zhulin, I. B., Ekborg, N. A., Lamed, R., Richardson, P. M., Borovok, I. and Hutcheson, S. 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genetics 4, e1000087. crossref(new window)

22.
Weissbach, A. and Hurwitz, J. 1959. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia. J. Biol. Chem. 234, 705-709.

23.
Wong, T. Y., Preston, L. A. and Schiller, N. L. 2000. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Ann. Rev. Microbiol. 54, 289-340. crossref(new window)

24.
Yamasaki, M., Ogura, K., Moriwaki, S., Hashimoto, W., Murata, K. and Mikami, B. 2005. Crystallization and preliminary X-ray analysis of alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61, 288-290. crossref(new window)

25.
Yonemoto, Y., Murata, K., Kimura, A., Yamaguchi, H. and Okayama, K. 1991. Bacterial alginate lyase: Characterization of alginate lyase-producing bacteria and purification of the enzyme. J. Ferment. Bioeng. 72, 152-157. crossref(new window)