Advanced SearchSearch Tips
Effects of the Acute Exposure Oxytetracycline on the Behavior and Endocrine Response in Adult Zebrafish
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.151-157
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.151
 Title & Authors
Effects of the Acute Exposure Oxytetracycline on the Behavior and Endocrine Response in Adult Zebrafish
Ko, Eun Seong; Lee, Seungheon;
  PDF(new window)
Zebrafish (Danio rerio) has been more widely used to study pharmacology. Oxytectracycline (OTC) is a broad-spectrum antibiotic and works by interfering with the ability to produce essential proteins of bacteria. The aim of this study was to identify the effects of exposure to OTC on behavioral changes or endocrine response in zebrafish. The behavioral effects of exposure to OTC (50, 100 or 200 mg/l) were characterized in several novelty-based paradigms such as the novel tank or open field test in zebrafish. Moreover, to investigate effects of exposure to OTC on endocrine response, we measured whole-body cortisol level using cortisol ELISA kit. As results of novel tank test, duration in top and immobile duration were significantly increased by the exposure to OTC in a concentration-dependent manner (p<0.05). In addition, moving distance, highly mobile, velocity and zone transition were significantly decreased by the exposure to OTC in a concentration-dependent manner (p<0.05). As results of open field test, the exposure to OTC increased immobile duration significantly (p<0.05). However, moving distance, mobile duration and velocity were significantly decreased by the exposure to OTC in a concentration-dependent manner (p<0.05). Besides, the exposure to OTC elevated whole-body cortisol levels in zebrafish. These results suggest that the exposure to OTC may induce chemical stress in zebrafish.
Behavioral test;chemical stress;cortisol;oxytetracycline;zebrafish;
 Cited by
Aluru, N. and Vijayan, M. M. 2009. Stress transcriptomics in fish: a role for genomic cortisol signaling. Gen. Comp. Endocrinol. 164, 142-150. crossref(new window)

Ambili, T. R., Saravanan, M., Ramesh, M., Abhijith, D. B. and Poopal, R. K. 2013. Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Arch. Environ. Contam. Toxicol. 64, 494-503. crossref(new window)

Cachat, J., Kyzar, E. J., Collins, C., Gaikwad, S., Green, J., Roth, A., El-Ounsi, M., Davis, A., Pham, M., Landsman, S., Stewart, A. M. and Kalueff, A. V. 2013. Unique and potent effects of acute ibogaine on zebrafish: the developing utility of novel aquatic models for hallucinogenic drug research. Behav. Brain Res. 236, 258-269. crossref(new window)

Chern, C. J. and Beutler, E. 1976. Biochemical and electrophoretic studies of erythrocyte pyridoxine kinase in white and black Americans. Am. J. Hum. Genet. 28, 9-17.

Demers, N. E. and Bayne, C. J. 1997. The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Dev. Comp. Immunol. 21, 363-373. crossref(new window)

Engelsma, M. Y., Huising, M. O., van Muiswinkel, W. B., Flik, G., Kwang, J., Savelkoul, H. F. and Verburg-van Kemenade, B. M. 2002. Neuroendocrine-immune interactions in fish: a role for interleukin-1. Vet. Immunol. Immunopathol. 87, 467-479. crossref(new window)

Fujiwara, T., Cherrington, A. D., Neal, D. N. and McGuinness, O. P. 1996. Role of cortisol in the metabolic response to stress hormone infusion in the conscious dog. Metabolism 45, 571-578. crossref(new window)

Gozubuyuk, A., Ozpolat, B., Cicek, A. F., Caylak, H., Yucel, O., Kavakli, K., Gurkok, S. and Genc, O. 2010. Comparison of side effects of oxytetracycline and talc pleurodesis: an experimental study. J. Cardiothorac. Surg. 5, 128. crossref(new window)

Grossman, L., Utterback, E., Stewart, A., Gaikwad, S., Chung, K. M., Suciu, C., Wong, K., Elegante, M., Elkhayat, S., Tan, J., Gilder, T., Wu, N., Dileo, J., Cachat, J. and Kalueff, A. V. 2010. Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav. Brain Res. 214, 277-284. crossref(new window)

Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., Craddock, C., Kyzar, E. J., Roth, A., Landsman, S., Gaikwad, S., Robinson, K., Baatrup, E., Tierney, K., Shamchuk, A., Norton, W., Miller, N., Nicolson, T., Braubach, O., Gilman, C. P., Pittman, J., Rosemberg, D. B., Gerlai, R., Echevarria, D., Lamb, E., Neuhauss, S. C., Weng, W., Bally-Cuif, L. and Schneider, H. 2013. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10, 70-86. crossref(new window)

Kist, L. W., Piato, A. L., da Rosa, J. G., Koakoski, G., Barcellos, L. J., Yunes, J. S., Bonan, C. D. and Bogo, M. R. 2011. Acute exposure to microcystin-producing cyanobacterium microcystis aeruginosa alters adult zebrafish (Danio rerio) swimming performance parameters. J. Toxicol. 2011, 280304.

Korelitz, B. I. and Sommers, S. C. 1976. Responses to drug therapy in ulcerative colitis. Evaluation by rectal biopsy and mucosal cell counts. Am. J. Dig. Dis. 21, 441-447. crossref(new window)

Kyzar, E., Stewart, A. M., Landsman, S., Collins, C., Gebhardt, M., Robinson, K. and Kalueff, A. V. 2013. Behavioral effects of bidirectional modulators of brain monoamines reserpine and d-amphetamine in zebrafish. Brain Res. 1527, 108-116. crossref(new window)

Nguyen, M., Yang, E., Neelkantan, N., Mikhaylova, A., Arnold, R., Poudel, M. K., Stewart, A. M. and Kalueff, A. V. 2013. Developing 'integrative' zebrafish models of behavioral and metabolic disorders. Behav. Brain Res. 256, 172-187. crossref(new window)

Parry, W. H., Martorano, F. and Cotton, E. K. 1976. Management of life-threatening asthma with intravenous isoproterenol infusions. Am. J. Dis. Child. 130, 39-42.

Petrenko, I. U., Titov, V. and Vladimirov Iu, A. 1995. Generation of active forms of oxygen by antibiotics of the tetracycline series during tetracycline catalysis of oxidation of ferrous iron. Antibiot. Khimioter. 40, 3-8.

Sunyer, J. O. and Tort, L. 1995. Natural hemolytic and bactericidal activities of sea bream Sparus aurata serum are effected by the alternative complement pathway. Vet. Immunol. Immunopathol. 45, 333-345. crossref(new window)

Tort, L. 2011. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366-1375. crossref(new window)

Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366-1375. crossref(new window)

Westerfield, M. 2007. Journal. p.^pp. Fourth Edition ed., Eugene, USA.

Williams, L. R., Wong, K., Stewart, A., Suciu, C., Gaikwad, S., Wu, N., Dileo, J., Grossman, L., Cachat, J., Hart, P. and Kalueff, A. V. 2012. Behavioral and physiological effects of RDX on adult zebrafish. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 155, 33-38. crossref(new window)