JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.189-196
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.189
 Title & Authors
Diversity and Phylogenetic Analysis of Culturable Marine Bacteria Isolated from Rhizosphere Soils of Suaeda japonica Makino in Suncheon Bay
You, Young-Hyun; Park, Jong Myong; Nam, Yoon-Jong; Kim, Hyun; Lee, Myung-Chul; Kim, Jong-Guk;
  PDF(new window)
 Abstract
Bacterial diversity was studied in the rhizosphere of Suaeda japonica Makino, which is native to Suncheon Bay in South Korea. Soil samples from several sites were diluted serially, and pure isolation was performed by subculture using marine agar and tryptic soy agar media. Genomic DNA was extracted from 29 pure, isolated bacterial strains, after which their 16S rDNA sequences were amplified and analyzed. Phylogenetic analysis was performed to confirm their genetic relationship. The 29 bacterial strains were classified into five groups: phylum Firmicutes (44.8%), Gamma proteobacteria group (27.6%), Alpha proteobacteria group (10.3%), phylum Bacteriodetes (10.3%), and phylum Actinobacteria (6.8%). The most widely distributed genera were Bacillus (phylum Firmicutes), and Marinobacterium, Halomonas, and Vibrio (Gamma proteobacteria group). To confirm the bacterial diversity in rhizospheres of S. japonica, the diversity index was used at the genus level. The results show that bacterial diversity differed at each of the sampling sites. These 29 bacterial strains are thought to play a major role in material cycling at Suncheon Bay, in overcoming the sea/mud flat-specific environmental stress. Furthermore, some strains are assumed to be involved in a positive interaction with the halophyte S. japonica, as rhizospheric flora, with induction of growth promotion and plant defense mechanism.
 Keywords
Coastal salt marsh;marine bacteria;Suncheon Bay;Suaeda japonica Makino;
 Language
Korean
 Cited by
 References
1.
Amann, R. I., Ludwig, W. and Schleifer, K. H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143-169.

2.
Campbell, B. J., Engel, A. S., Porter, M. L. and Takai, K. 2006. The versatile $\varepsilon$-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4, 458-468. crossref(new window)

3.
Cervantes-Uc, J. M., Catzin, J., Vargas, I., Herrera-Kao, W., Moguel, F., Ramirez, E., Rincon-Arriaga, S. and Lizama-Uc, G. 2014. Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J. Appl. Microbiol. 117, 1056-1065. crossref(new window)

4.
Chapman, V. J. 1974. Salt marshes and salt deserts of the world in Ecology of halophytes. Academic Press, New York. pp. 3-22.

5.
Chen, Y. G., Xiao, H. D., Tang, S. K., Zhang, Y. Q., Borrathybay, E., Cui, X. L., Li, W. J. and Liu, Y. Q. 2009. Alteromonas halophila sp. nov., a new moderately halophilic bacterium isolated from a sea anemone. Antonie Van Leeuwenhoek 96, 259-266. crossref(new window)

6.
Cottrell, M. T. and Kirchman, D. L. 2000. Natural assemblages of marine proteobacteria and members Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl. Environ. Microbiol. 66, 1692-1697. crossref(new window)

7.
Cottrell, M. T. and Kirchman, D. L. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. App. Environ. Microbiol. 66, 5116-5122. crossref(new window)

8.
Dai, J., Sun, M. Y., Culp, R. A. and Noakes, J. E. 2009. A laboratory study on biochemical degradation and microbial utilization of organic matter comprising a marine diatom, land grass, and salt marsh plant in estuarine ecosystems. Aquat. Ecol. 43, 825-841. crossref(new window)

9.
Felsenstein, J. 1985. Confidence limits on phylogeneis: an approach using the bootstrap. Evolution 39, 783-791. crossref(new window)

10.
Fierer, N. and Jackson, R. B. 2006. The diversity and bio-geography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626-631. crossref(new window)

11.
GlÖckner, F. O., Fuchs, B. M. and Aman, R. 1999. Bacterioplankton compositions of lakesand oceans: a first comparison based on fluorescence- in situ-hybridization. Appl. Environ. Microbiol. 65, 3721-3726.

12.
Gonzalez, J. M. and Moran, M. A. 1997. Numerical dominance of a group of marine bacteria in the $\alpha$-subclass of the class Proteobacteria in coastal seawater. Appl. Environ. Microbiol. 63, 4237-4242.

13.
Hill, T. C., Walsh, K. A., Harris, J. A. and Moffett, B. F. 2003. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 43, 1-11. crossref(new window)

14.
Ihm, B. S., Leem, J. S., Kim, J. W., Kim, H. S. and Ihm, H. B. 1998. Studies on the vegetation at the wetland of Suncheonman. Bull Inst Litt Envi Mokpo Nat. Univ. 15, 1-8.

15.
Jang, S. K. and Cheong, C. J. 2010. Characteristics of grain size and organic matters in the tidal flat sediments of the Suncheon Bay. J. Kor. Soc. Mar. Environ. Eng. 13, 198-205.

16.
Jeon, S. A., Sung, H. R., Park, Y. M., Park, J. H. and Ghim, S. Y. 2009. Analysis of endospore-forming bacteria or nitrogen-fixing bacteria community isolated from plants rhizo-sphere in Dokdo Island. Kor. J. Microbiol. Biotechnol. 37, 189-196.

17.
Jeong, S. M. and Lee, M. B. 2004. Change of estuary landscape in Suncheon Bay, South Coast of Korea. J. Kor. Geomorphological Association 11, 127-139.

18.
Kim, B. S., Oh, H. M., Kang, H., Park, S. and Chun, J. 2004. Remarkable bacterial diversity in the tidal flat sediment as revealed by 16S rDNA analysis. J. Microbiol. Biotechnol. 14, 205-211.

19.
Kim, K. K., Jin, L., Yang, H. C. and Lee, S. T. 2007. Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int. J. Syst. Evol. Microbiol. 57, 675-681. crossref(new window)

20.
Kim, Y. E., Yoon, H. J., You, Y. H., Kim, H., Seo, Y. G., Kim, M., Woo, J. R., Nam, Y. J., Irina, K., Lee, G. M., Song, J. H., Jin, Y. J., Kim, J. G. and Seu, Y. B. 2014. Diversity and characteristics of rhizosphere microorganisms isolated from the soil around the roots of three plants native to the Dokdo Islands. J. Life Sci. 24, 461-466. crossref(new window)

21.
Kim, Y. G., Jin, Y. A., Hwang, C. Y. and Cho, B. C. 2008. Marinobacterium rhizophilum sp. nov., isolated from the rhizosphere of the coastal tidal-flat plant Suaeda japonica. Int. J. Syst. Evol. Microbiol. 58,164-167. crossref(new window)

22.
Lambshead, P. J. D., Platt, H. M. and Shaw, K. M. 1983. Detection of differences among assemblages of marine benthic species based on anssessment of dominance and diversity. J. Nat. Hist. 17, 859-874. crossref(new window)

23.
Lee, S., Ka, J. O. and Song, H. G. 2012. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J. Microbiol. 50, 45-49. crossref(new window)

24.
Lim, J. M., Jeon, C. O. and Kim, C. J. 2006. Bacillus taeanensis sp. nov., a halophilic Gram-positive bacterium from a solar saltern in Korea. Int. J. Syst. Evol. Microbial. 56, 2903-2908. crossref(new window)

25.
Maidak, B. L., Cole, J. R., Parker, T. G., Jr, C. T., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. H., Paranik, S., Schmidt, T. M. and Tiedje, J. M. 2000. The RDP (Ribosomal Database project) continues. Nucleic Acids Res. 28, 73-174. crossref(new window)

26.
Mani, A., Arga, C. A., Jane, D., Nithyalakshmy, R., Kaveh, E. and Ehsan, M. 2012. Carbohydrate degrading bacteria losely associated with Tetraselmis indica: influence on algal growth. Aquat. Biol. 15, 61-71. crossref(new window)

27.
Margalef, R. 1958. Information theory in ecology. Gen. Syst. 3, 36-71.

28.
MEthé, B. A., Hiorns, W. D. and Zehr, J. P. 1998. Contrasts between marine and freshwater bacterial community composition: analyses of communities in Lake George and six other Adirondack lakes. Limnol. Oceanogr. 43, 368-374. crossref(new window)

29.
Oslen, G. J., Land, D. J., Giovannoni, S. J. and Pace, N. R. 1986. Microbial ecology and evolution: a ribosomal RND approach. Ann. Rev. Micribiol. 40, 337-365. crossref(new window)

30.
Park, J. M., Park, S. J., Kim, W. J. and Ghim, S. Y. 2012. Application of antifungal CFB to increase the durability of cement mortar. J. Microbiol. Biotechnol. 22, 1015-1020. crossref(new window)

31.
Pielou, E. C. 1975. Ecological diversity. John Wiley, New York. p 165.

32.
Rodriguez, R. J., Henson, J., Van, V. E., Hoy, M., Wright, L., Beckwith, F., Kim, Y. and Redman, R. S. 2008. Stress tolerance in plants via habitat-adapted symbiosis. ISME J. 2, 404-416. crossref(new window)

33.
Seo, Y., Kim, M., You, Y. H., Yoon, H., Woo, J. R. Lee, G. and Kim, J. G. 2012. Genetic diversity of endophytic fungi isolated from the roots of halophytes naturally growing in Suncheon Bay. Kor. J. Mycol. 40, 7-10. crossref(new window)

34.
Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H. and Sa, T. M. 2010. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J. Microbiol. Biotechnol. 20, 1577-1584 crossref(new window)

35.
Simpson, E. H. 1949. Measurement of diversity. Nature 163, 688. crossref(new window)

36.
Sung, H. R. and Ghim, S. Y. 2010. Bacterial diversity and distribution of cultivable bacteria isolated from Dokdo Island. Kor. J. Microbiol. Biotechnol. 38, 263-272.

37.
Tang, Y. W., Von, G. A., Waddington, M. G., Hopkins, M. K., Smith, D. H., Li, H., Kolbert, C. P., Montgomery, S. O. and Persing, D. H. 2000. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J. Clin. Microbiol. 38, 1676-1678.

38.
Waller, F., Achatz, B., Baltruscha, T. H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hckelhoven, R., Neumann, C., Wettstein, D. V., Franken, P. and Kogel, K. H. 2005. The endophytic fungus Piriformospora indica reprograms barley to saltstress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 102, 13386-13391. crossref(new window)

39.
Whittaker, R. H. 1977. Evolution of species diversity in land communities. Evol. Biol. 10, 1-67.

40.
Woo, P. C., Lau, S. K., Teng, H. and Yuen, K. Y. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin. Microbiol. Infect. 14, 908-934. crossref(new window)

41.
Yoon, J. H., Kang, S. J., Lee, S. Y., Lee, M. H. and Oh, T. K. 2005. Virgibacillus dokdonensis sp. Nov., isolated from a Korean island, Dokdo, located at the edge of the Ease Sea in Korea. Int. J. Syst. Evol. Microbiol. 51, 1079-1086.

42.
You, Y. H., Yoon, H., Kang, S. M., Shin, J. H., Choo, Y. S., Lee, I. J., Lee, J. M. and Kim, J. G. 2012. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J. Microbiol. Biotechnol. 22, 1550-1557.

43.
Zhiyong, L., He, L. and Miao, X. 2007. Cultivable bacterial community from south China sea sponge as revealed by DGGE fingerprinting and 16S rDNA phylogenetic analysis. Curr. Microbiol. 55, 654-672.