JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Biological Activity and Chemical Characteristics of Cordyceps militaris Powder Fermented by Several Microscopic Organisms
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.197-205
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.197
 Title & Authors
Biological Activity and Chemical Characteristics of Cordyceps militaris Powder Fermented by Several Microscopic Organisms
Ahn, Hee-Young; Park, Kyu-Rim; Yoon, Kyoung-Hoon; Lee, Jae-Yun; Cho, Young-Su;
  PDF(new window)
 Abstract
The comparative effects of the fibrinolytic action, antioxidative activity, and tyrosinase inhibition of Cordyceps militaris powder and fermented Cordyceps militaris powders were investigated using several microscopic organisms. The nutritional components such as phenolic compounds, flavonoids, and minerals were also measured. The total phenolic compounds and flavonoid concentrations were highest in the Cordyceps militaris powder fermented by Aspergillus oryzae. Major minerals were K, Ca, Mg, and Zn. Native polyacrylamide gel electrophoresis (native-PAGE) analysis of the total protein patterns of Cordyceps militaris powder and fermented Cordyceps militaris powders revealed slight varietal differences. Fibrinolytic activity was highest in the Cordyceps militaris powder fermented by Bacillus subtilis and Aspergillus kawachii. The DPPH radical scavenging activity was slightly stronger in the powder fermented by Monascus purpureus; however, these samples all exhibited a relatively low activity when compared with butylated hydroxytoluene (BHT). Tyrosinase inhibition activity was stronger in the powder fermented by Aspergillus oryzae than in unfermented powder. These results may provide basic data for understanding the biological activities and chemical characteristics of Cordyceps militaris powder fermented by several microscopic organisms for the development of functional foods.
 Keywords
Antioxidative activity;Cordyceps militaris;fermentation;fibrinolytic activity;tyrosinase inhibition activity;
 Language
Korean
 Cited by
 References
1.
A.O.A.C. 1975. Official methods of analysis. 12th eds., Association of official analytical chemists. Washington, D.C., U.S.A.

2.
Ahn, H. Y., Lee, J. H., Kang, M. J., Cha, J. Y. and Cho, Y. S. 2012. Fibrinolytic activity and chemical properties of Cordycepin-enriched Cordyceps militaris JLM 0636. J. Life Sci. 22(2), 226-231. crossref(new window)

3.
Ahn, H. Y., Park, K. R., Kim, Y. R., Cha, J. Y. and Cho, Y. S. 2013. Chemical characteristics fermented Cordycepin-enriched Cordyceps militaris. J. Life Sci. 23(8), 1032-1040. crossref(new window)

4.
Ahn, Y. S., Kim, Y. S. and Shin, D. H. 2006. Isolation, identification and fermentation characteristics of Bacillus sp. with high protease activity from traditional chenggukjang. Kor. J. Food Sci. Technol. 38, 82-87.

5.
Astrup, T. and Mullertz, S. 1991. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351.

6.
Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204.

7.
Cha, J. Y., Kim, H. W., Heo, J. S., Ahn, H. Y., Eom, K. E., Heo, S. J. and Cho, Y. S. 2010. Ingredients analysis and biological activity of fermented Angelica gigas Nakai by mold. J. Life Sci. 20(9), 1385-1393. crossref(new window)

8.
Cha, J. Y., Kim, Y. S., Ahn, H. Y., Kang, M. J., Heo, S. J. and Cho, Y. S. 2011. Biological activity and biochmical properties of silkworm (Bombyx mori L.) powder fermented with Bacillus subtilis and Aspergillus kawachii. J. Life Sci. 21(1), 81-88. crossref(new window)

9.
Chang, M. I., Kim, J. Y., Kim, U. S. and Baek, S. H. 2013. Antioxidant, tyrosinase inhibitory, and anti-proliferative activities of Gochujang added with Cheonggukjang powder made from swaord bean. Kor. J. Food Sci. Technol. 45(2), 221-226. crossref(new window)

10.
Choi, N. S., Seo, S. Y. and Kim, S. H. 1999. Screening of mushrooms having fibrinolytic activity. Kor. J. Food Sci. Technol. 31, 553-557.

11.
Davis, B. J. 1964. Multiple range and multiple F test. Biometrics 1, 1-42.

12.
Duncan, D. B. 1957. Multiple range test for correlated and heteroscedastic means. Biometrics 13, 164-176. crossref(new window)

13.
Wang, Y., Bao, L., Yang, X., Li, L., Li, S., Gao, H., Yao, X. S., Wen, H. and Liu, H. W. 2012. Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem. 132, 1346-1353. crossref(new window)

14.
Guo, P., Kai, Q., Gao, J., Lian, Z. Q., Wu, C. M., Wu, C. A. and Zhu, H. B. 2010. Cordycepin prevents hyperlipidemia in hamsters fed a high-fat diet via activation of AMP-activated protein kinase. J. Pharmacol. Sci. 113, 395-403. crossref(new window)

15.
Hetog, M. G. L., Hollman, P. C. H. and Van, D. P. B. 1993. Content of potentially anticarcinogenic flavonoids of tea infusions, wines and fruit juice. J. Agr. Food Chem. 41, 1242-1246. crossref(new window)

16.
Illana, E. C. 2007. Cordyceps sinensis, a fungi used in the Chinese traditional medicine. Rev. Iberoam. Micol. 24, 259-262. crossref(new window)

17.
Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64, 555-559. crossref(new window)

18.
Kabir, Y., Kimura, S. and Tamura, T. 1998. Dietary effect of Ganoderma lucidum: Mushroom on blood press and lipid levels in spontaneously hypertentive rats (SHR). J. Nutr. Sci. Vitaminol. 34, 433-438.

19.
Kiho, T., Hui, J. Yamane, A. and Ukai, S. 1993. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis. Biol. Pharm. Bull. 16, 1291-1293. crossref(new window)

20.
Kim, E. J., Choi, J. Y., Yu, M. R., Kim, M. Y., Lee, S. H. and Lee, B. H. 2012. Total polyphenols, total flavonoid content, and antioxidant activity of Korean natural and medicinal plants. Kor. J. Food Sci. Technol. 44(3), 337-342. crossref(new window)

21.
Kim, S. J., Heo, M. Y., Bae, K. H., Kang, S. S. and Kim, H. P. 2003. Tyrosinase inhibitory activity of plant extract (III): Fifty Korean indigenous plants. J. Applied Phamacol. 11, 245-248.

22.
Lee, J. S., Kwon, J. S., Won, D. P., Lee, J. H., Lee, K. E., Lee, S. Y. and Hong, E. K. 2010. Study of macrophage activation and structural characteristics of purified polysaccharide from the fruiting body of Cordyceps militaris. J. Microbiol. Biotechnol. 20, 1053-1060. crossref(new window)

23.
Lee, O. H., Kim, K. Y., Jang, M. L., Yu, K. H., Kim, S. G., Kim, M. H. and Lee, S. H. 2008. Evaluation of proanthocyanidin contents in total polyphenolic compounds of Pine(Pinus densiflora) needle extracts and their antioxidative activities. J. Life Sci. 18(2), 213-219. crossref(new window)

24.
Lee, S. J., Shin, S. R. and Yoon, K. Y. 2013. Physicochemical properties of black Doraji (Platycodon grandiflorum). Kor. J. Food Technol. 45(4), 422-427. crossref(new window)

25.
Li, S. P., Zhang, G. H., Zeng, Q., Huang, Z. G., Wang, Y. T., Dong, T. T. and Tsim, K. W. 2006. Hypoglycemic activity of polysaccharide, with antioxidation, isolated from cultured Cordyceps mycelia. Phytomedicine 13, 428-433. crossref(new window)

26.
Lim, J. D., Cha, H. S., Choung, M. G., Choi, R. N., Choi, D. J. and Youn, A. R. 2014. Antioxidant activities of acidic ethanol extract and the anthocyanin rich fraction from Aronia melanocarpa. Kor. J. Food Cook. Sci. 30(5), 573-578. crossref(new window)

27.
Masamoto, Y., Ando, H., Murata, Y., Shimoishi, Y., Tada, M. and Takahata, K. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Biosci. Biotechnol. Biochem. 67, 631-634. crossref(new window)

28.
Mizuno, T., Kinoshit, T., Zhung, C., Ito, H. and Mayuzumi, Y. 1995. Antitumor-activity heteroglycans from niohshimeji, Tricholoma giganteum. Food Reviews International 59, 563-567.

29.
Oh, S. W., Kim, S. H., Song, H. N. and Han, D. S. 2003. Comparative chemical compositions of four kinds of Tochukaso. Kor. J. Food Sci. Technol. 35(1), 15-22.

30.
Son, S. J. and Lee, S. P. 2011. Evaluation of rheological and functional properties of roasted soybean flour and mixed cereals fermented by Bacillus sp. J. Kor. Soc. Food Sci. Nutr. 40(3), 450-457. crossref(new window)

31.
Swain, T., Hillis, W. E. and Oritega, M. 1959. Phenolic constituents of Ptunus domestica. I. Quantitative analysis of phenolic constituents. J. Sci. Food Agric. 10, 83-88.

32.
Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Jiang, R., Tian, D. and Sun, X. 2009. Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresour. Technol. 100, 1682-1686. crossref(new window)

33.
Erkel, G. and Anke, T. 1992. Antibiotics from Basidiomycetes XLI, clavicoronic acid, A novel inhibitor of reverse transcriptase from Clavicorona pyxidate. J. Antibiot. 45, 29-37. crossref(new window)

34.
Yang, S. A., Im, N. K. and Lee, I. S. 2007. Effects of metanolic extract from Salvia miltiorrhiza Bunge on in vitro antithrombotic and antioxidative activities. Kor. J. food Technol. 39, 83-87.