Advanced SearchSearch Tips
Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.223-230
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.223
 Title & Authors
Relationship between the Regulator of Calcineurin 1-4 Isoform and In Vitro Osteoclast Differentiation
Park, Kyeong-Lok;
  PDF(new window)
Regulator of calcineurin 1 (RCAN1) is an endogenous calcineurin inhibitor that plays an important role in the pathogenesis of diseases related to the calcineurin-NFATc1 signaling pathway. The RCAN1-4 isoform is subject to NFATc1-dependent regulation. During receptor activator of nuclear factor kappa-B ligand (RANKL)-stimulated osteoclastogenesis, the calcineurin-NFATc1 pathway is critical. Because there is little information available on the role of RCAN1 in osteoclast differentiation, this study investigated whether changes in RCAN1 expression are related to the calcineurin-NFATc1 pathway and osteoclast differentiation. Mouse bone marrow monocytes (BMMs) were treated with 50 ng/ml of RANKL and M-CSF. Expression levels of NFATc1, calcineurin, and RCAN1 isoforms were determined using RT-PCR and Western blotting. Osteoclast differentiation was examined using tartrate-resistent acid phosphatase (TRAP) staining. To evaluate the effect of RCAN1 overexpression on osteoclastogenesis, cells were transfected with a mouse RCAN1-4 cDNA plasmid. After RANKL stimulation of BMMs, expression of NFATc1 and RCAN1 was increased at the mRNA and protein level, while calcineurin expression was unchanged. When the RCAN1-4 gene construct was transfected, the expression of RCAN1 protein was not increased despite several-fold increases in RCAN1-4 mRNA expression. Regardless of RANKL stimulation, over-expression of RCAN1-4 tended to reduce NFATc1 expression and knock-down of RCAN1 increase it. While BMMs transfected with the RCAN1-4 vector were differentiated into distinct osteoclasts, their phenotypes did not vary from those of mock controls. These results suggest that RCAN1 has a limited effect on the calcineurin-NFATc1 pathway during RANKL-stimulated osteoclast differentiation.
Differentiation;NFATc1;osteoclast;RCAN1 (Regulator of calcineurin 1);
 Cited by
Bhoiwala, D. L., Kannabiran, V., Hushmendy, S. F., Hahn, A., Heuring, J. M. and Crawford, D. R. 2011. The calcineurin inhibitor RCAN1 is involved in cultured macrophage and in vivo immune response. FEMS Immunol. Med. Microbiol. 61, 103-113. crossref(new window)

Blair, H. C., Teitelbaum, S. L., Ghiselli, R. and Gluck, S. 1989. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 245, 855-857. crossref(new window)

Bush, C. R., Havens, J. M., Necela, B. M., Su, W., Chen, L., Yanagisawa, M., Anastasiadis, P. Z., Guerra, R., Luxon, B. A. and Thompson, E. A. 2007. Functional genomic analysis reveals cross-talk between peroxisome proliferator-activated receptor gamma and calcium signaling in human colorectal cancer cells. J. Biol. Chem. 282, 23387-23401. crossref(new window)

Cano, E., Canellada, A., Minami, T., Iglesias, T. and Redondo, J. M. 2005. Depolarization of neural cells induces transcription of the Down syndrome critical region 1 isoform 4 via a calcineurin/nuclear factor of activated T cells-dependent pathway. J. Biol. Chem. 280, 29435-29443. crossref(new window)

Corsi, M. M., Ponti, W., Venditti, A., Ferrara, F., Baldo, C., Chiappelli, M. and Licastro, F. 2003. Proapoptotic activated T-cells in the blood of children with Down's syndrome: relationship with dietary antigens and intestinal alterations. Int. J. Tissue React. 25, 117-125.

Davies, K. J., Ermak, G., Rothermel, B. A., Pritchard, M., Heitman, J., Ahnn, J., Henrique-Silva, F., Crawford, D., Canaider, S., Strippoli, P., Carinci, P., Min, K. T., Fox, D. S., Cunningham, K. W., Bassel-Duby, R., Olson, E. N., Zhang, Z., Williams, R. S., Gerber, H. P., Perez-Riba, M., Seo, H., Cao, X., Klee, C. B., Redondo, J. M., Maltais, L. J., Bruford, E. A., Povey, S., Molkentin, J. D., McKeon, F. D., Duh, E. J., Crabtree, G. R., Cyert, M. S., de la Luna, S. and Estivill, X. 2007. Renaming the DSCR1/Adapt78 gene family as RCAN: regulators of calcineurin. FASEB J. 21, 3023-3028. crossref(new window)

Dougall, W. C., Glaccum, M., Charrier, K., Rohrbach, K., Brasel, K., De Smedt, T., Daro, E., Smith, J., Tometsko, M. E., Maliszewski, C. R., Armstrong, A., Shen, V., Bain, S., Cosman, D., Anderson, D., Morrissey, P. J., Peschon, J. J. and Schuh, J. 1999. RANK is essential for osteoclast and lymph node development. Genes. Dev. 13, 2412-2424. crossref(new window)

Fuentes, J. J., Genesca, L., Kingsbury, T. J., Cunningham, K. W., Perez-Riba, M., Estivill, X. and de la Luna, S. 2000. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 9, 1681-1690. crossref(new window)

Fuentes, J. J., Pritchard, M. A. and Estivill, X. 1997. Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44, 358-361. crossref(new window)

Hasegawa, H., Kido, S., Tomomura, M., Fujimoto, K., Ohi, M., Kiyomura, M., Kanegae, H., Inaba, A., Sakagami, H. and Tomomura, A. 2010. Serum calcium-decreasing factor, caldecrin, inhibits osteoclast differentiation by suppression of NFATc1 activity. J. Biol. Chem. 285, 25448-25457. crossref(new window)

Hassold, T. J. and Jacobs, P. A. 1984. Trisomy in man. Annu. Rev. Genet. 18, 69-97. crossref(new window)

Hirakawa, Y., Nary, L. J. and Medh, R. D. 2009. Glucocorticoid evoked upregulation of RCAN1-1 in human leukemic CEM cells susceptible to apoptosis. J. Mol. Signal. 4, 6. crossref(new window)

James, I. E., Lark, M. W., Zembryki, D., Lee-Rykaczewski, E. V., Hwang, S. M., Tomaszek, T. A., Belfiore, P. and Gowen, M. 1999. Development and characterization of a human in vitro resorption assay: demonstration of utility using novel antiresorptive agents. J. Bone Miner. Res. 14, 1562-1569. crossref(new window)

Jang, C., Lim, J. H., Park, C. W. and Cho, Y. J. 2011. Regulator of calcineurin 1 Isoform 4 (RCAN1.4) is overexpressed in the glomeruli of diabetic mice. Kor. J. Physiol. Pharmacol. 15, 299-305. crossref(new window)

Kuroda, Y., Hisatsune, C., Nakamura, T., Matsuo, K. and Mikoshiba, K. 2008. Osteoblasts induce Ca2+ oscillation-independent NFATc1 activation during osteoclastogenesis. Proc. Natl. Acad. Sci. USA 105, 8643-8648. crossref(new window)

Li, J., Sarosi, I., Yan, X. Q., Morony, S., Capparelli, C., Tan, H. L., McCabe, S., Elliott, R., Scully, S., Van, G., Kaufman, S., Juan, S. C., Sun, Y., Tarpley, J., Martin, L., Christensen, K., McCabe, J., Kostenuik, P., Hsu, H., Fletcher, F., Dunstan, C. R., Lacey, D. L. and Boyle, W. J. 2000. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 97, 1566-1571. crossref(new window)

Mammucari, C., Tommasi di Vignano, A., Sharov, A. A., Neilson, J., Havrda, M. C., Roop, D. R., Botchkarev, V. A., Crabtree, G. R. and Dotto, G. P. 2005. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev. Cell 8, 665-676. crossref(new window)

Minami, T. 2014. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J. Biochem. 155, 217-226. crossref(new window)

Peiris, H., Raghupathi, R., Jessup, C. F., Zanin, M. P., Mohanasundaram, D., Mackenzie, K. D., Chataway, T., Clarke, J. N., Brealey, J., Coates, P. T., Pritchard, M. A. and Keating, D. J. 2012. Increased expression of the glucose-responsive gene, RCAN1, causes hypoinsulinemia, beta-cell dysfunction, and diabetes. Endocrinology 153, 5212-5221. crossref(new window)

Porta, S., Serra, S. A., Huch, M., Valverde, M. A., Llorens, F., Estivill, X., Arbones, M. L. and Marti, E. 2007. RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum. Mol. Genet. 16, 1039-1050. crossref(new window)

Rothermel, B. A., Vega, R. B. and Williams, R. S. 2003. The role of modulatory calcineurin-interacting proteins in calcineurin signaling. Trends. Cardiovasc. Med. 13, 15-21. crossref(new window)

Ryeom, S., Greenwald, R. J., Sharpe, A. H. and McKeon, F. 2003. The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nat. Immunol. 4, 874-881. crossref(new window)

Sanna, B., Brandt, E. B., Kaiser, R. A., Pfluger, P., Witt, S. A., Kimball, T. R., van Rooij, E., De Windt, L. J., Rothenberg, M. E., Tschop, M. H., Benoit, S. C. and Molkentin, J. D. 2006. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl. Acad. Sci. USA 103, 7327-7332. crossref(new window)

Seeman, E. and Delmas, P. D. 2006. Bone quality-the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354, 2250-2261. crossref(new window)

Sun, X., Wu, Y., Herculano, B. and Song, W. 2014. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS One 9, e95471. crossref(new window)

Wei, S., Teitelbaum, S. L., Wang, M. W. and Ross, F. P. 2001. Receptor activator of nuclear factor-kappa b ligand activates nuclear factor-kappa b in osteoclast precursors. Endocrinology 142, 1290-1295.

Weischenfeldt, J. and Porse, B. 2008. Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. CSH Protoc 2008, pdb prot5080.

Wu, H., Kao, S. C., Barrientos, T., Baldwin, S. H., Olson, E. N., Crabtree, G. R., Zhou, B. and Chang, C. P. 2007. Down syndrome critical region-1 is a transcriptional target of nuclear factor of activated T cells-c1 within the endocardium during heart development. J. Biol. Chem. 282, 30673-30679. crossref(new window)