JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Angiotensin II-Induced Generation of Reactive Oxygen Species Is Regulated by a Phosphatidylinositol 3-Kinase/L-Type Calcium Channel Signaling Pathway
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.231-236
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.231
 Title & Authors
Angiotensin II-Induced Generation of Reactive Oxygen Species Is Regulated by a Phosphatidylinositol 3-Kinase/L-Type Calcium Channel Signaling Pathway
Jin, Seo Yeon; Ha, Jung Min; Kim, Young Whan; Lee, Hye Sun; Bae, Sun Sik;
  PDF(new window)
 Abstract
Angiotensin II (AngII) is an essential hormone that affects vascular physiology. For example, stimulation of vascular smooth muscle cells (VSMCs) rapidly induces vasoconstriction and results in the up-regulation of blood pressure. Chronic stimulation of VSMCs with AngII also results in hypertrophy. In this study, we confirmed an involvement of phosphatidylinositol 3-kinase (PI3K)-dependent calcium mobilization in AngII-induced generation of reactive oxygen species (ROS). Stimulation of rat aortic smooth muscle cells (RASMCs) with AngII significantly induced the generation of ROS in a dose- and time-dependent manner. AngII-induced generation of ROS was completely abolished by pharmacological inhibition of PI3K (with LY294002), but inhibition of the ERK signaling pathway had no effect. AngII-induced calcium mobilization was completely blocked by inhibition of PI3K, whereas inhibition of the ERK signaling pathway by PD98059 was ineffective. Depletion of extracellular calcium or inhibition of the L-type calcium channel by nifedipine completely blocked AngII-induced calcium mobilization. Depletion of extracellular calcium by EGTA and incubation of RASMCs with calcium-free medium both significantly blocked AngII-induced ROS generation. Inhibition of the L-type calcium channel also significantly blocked AngII-induced ROS generation. These results suggest that AngII-induced ROS generation is regulated by calcium mobilization, which, in turn, is modulated by a PI3K/L-type calcium channel signaling pathway.
 Keywords
Angiotensin;L-type calcium channel;PI3K (phosphatidylinositol 3-kinase);ROS (reactive oxygen species);smooth muscle cell;
 Language
English
 Cited by
 References
1.
Downward, J. 1998. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10, 262-267. crossref(new window)

2.
Geisterfer, A. A., Peach, M. J. and Owens, G. K. 1988. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62, 749-756. crossref(new window)

3.
Grynkiewicz, G., Poenie, M. and Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450.

4.
Hanna, I. R., Taniyama, Y., Szocs, K., Rocic, P. and Griendling, K. K. 2002. NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling. Antioxid. Redox Signal. 4, 899-914. crossref(new window)

5.
Hall, K. L., Harding, J. W. and Hosick, H. L. 1991. Isolation and characterization of clonal vascular smooth muscle cell lines from spontaneously hypertensive and normotensive rat aortas. In Vitro Cell. Dev. Biol. 27A, 791-798.

6.
Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y. and Kikkawa, U. 1997. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett. 410, 493-498. crossref(new window)

7.
Lambeth, J. D. 2004. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189. crossref(new window)

8.
Lassègue, B., Sorescu, D., Szöcs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. and Griendling, K. K. 2001. Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888- 894. crossref(new window)

9.
Marumo, T., Schini-Kerth, V. B., Fisslthaler, B. and Busse, R. 1997. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 96, 2361-2367. crossref(new window)

10.
Nishida, M., Tanabe, S., Maruyama, Y., Mangmool, S., Urayama, K., Nagamatsu, Y., Takagahara, S., Turner, J. H., Kozasa, T., Kobayashi, H., Sato, Y., Kawanishi, T., Inoue, R., Nagao, T. and Kurose, H. 2005. G alpha 12/13- and reactive oxygen species-dependent activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase by angiotensin receptor stimulation in rat neonatal cardiomyocytes. J. Biol. Chem. 280, 18434-18441. crossref(new window)

11.
Nickenig, G., Strehlow, K., Baumer, A. T., Baudler, S., Wassmann, S., Sauer, H. and Bohm, M. 2000. Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression. Br. J. Pharmacol. 131, 795-803. crossref(new window)

12.
Quignard, J. F., Mironneau, J., Carricaburu, V., Fournier, B., Babich, A., Nurnberg, B., Mironneau, C. and Macrez, N. 2001. Phosphoinositide 3-kinase gamma mediates angiotensin II-induced stimulation of L-type calcium channels in vascular myocytes. J. Biol. Chem. 276, 32545-32551. crossref(new window)

13.
Rajagopalan, S., Kurz, S., Münzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K. and Harrison, D. G. 1996. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916-1923. crossref(new window)

14.
Soberman, R. J. 2003. The expanding network of redox signaling: new observations, complexities, and perspectives. J. Clin. Invest. 111, 571-574. crossref(new window)

15.
Seshiah, P. N., Weber, D. S., Rocic, P., Valppu, L., Taniyama, Y. and Griendling, K. K. 2002. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ. Res. 91, 406-413. crossref(new window)

16.
Touyz, R. M., Chen, X., Tabet, F., Yao, G., He, G., Quinn, M. T., Pagano, P. J. and Schiffrin, E. L. 2002. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ. Res. 90, 1205-1213. crossref(new window)

17.
Trebak, M., Ginnan, R., Singer, H. A. and Jourd′heuil, D. 2010. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid. Redox Signal. 12, 657-674. crossref(new window)

18.
Ushio-Fukai, M., Alexander, R. W., Akers, M., Yin, Q., Fujio, Y., Walsh, K. and Griendling, K. K. 1999. Reactive oxygen species mediate the activation of Akt/protein kinase B by angio tensin II in vascular smooth muscle cells. J. Biol. Chem. 274, 22699-22704. crossref(new window)

19.
Ushio-Fukai, M., Alexander, R. W., Akers, M., Lyons, P. R., Lassègue, B. and Griendling, K. K. 1999. Angiotensin II receptor coupling to phospholipase D is mediated by the betagamma subunits of heterotrimeric G proteins in vascular smooth muscle cells. Mol. Pharmacol. 55, 142-149.

20.
Ushio-Fukai, M., Alexander, R. W., Akers, M. and Griendling, K. K. 1998. p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. J. Biol. Chem. 273, 15022-15029. crossref(new window)

21.
Viard, P., Exner, T., Maier, U., Mironneau, J., Nürnberg, B. and Macrez, N. 1999. Gbetagamma dimers stimulate vascular L-type Ca2+ channels via phosphoinositide 3-kinase. FASEB J. 13, 685-694.

22.
Weiss, D., Kools, J. J. and Taylor, W. R. 2001. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 103, 448-454. crossref(new window)

23.
Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R. and Dagenais, G. 2000. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N. Engl. J. Med. 342, 145-153. crossref(new window)

24.
Yan, C., Kim, D., Aizawa, T. and Berk, B. C. 2003. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler. Thromb. Vasc. Biol. 23, 26-36. crossref(new window)