JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 2,  2015, pp.237-242
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.2.237
 Title & Authors
Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure
Park, Jong-Myong; Park, Sung-Jin; Ghim, Sa-Youl;
  PDF(new window)
 Abstract
The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize , but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize . Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.
 Keywords
Bio-deterioration; solubilization;cement mortar;calcite-forming bacteria (CFB);microbially induced precipitation (MICP);
 Language
Korean
 Cited by
 References
1.
Achal, V., Mukherjee, A., Basu, P. C. and Reddy, M. S. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36, 981-988. crossref(new window)

2.
Ascaso, C., Wierzchos, J. and Castello, R. 1998. Study of the biogenic weathering of calcereous litharenite stones caused by lichen and endolithic microorganisms. Int. Biodeterior. Biodegradation 42, 29-38. crossref(new window)

3.
Boquet, E., Boronat, A. and Ramos-Cormenzana, A. 1973. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246, 527-529. crossref(new window)

4.
Muynck, W. D., Belle, N. D. and Verstraete, W. 2010. Antimicrobial mortar surface for the improvement of hygienic conditions. J. Appl. Microbiol. 108, 62-72. crossref(new window)

5.
Muynck, W. D., Belie, N. D. and Verstraete, W. 2010. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36, 118-136. crossref(new window)

6.
Diakumaku, E., Gorbushin, A. A., Krumbein, W. E., Panina, L. and Soukharjevski, S. 1995. Black fungi in marble and limestones-an aesthetical, chemical and physical problem for the conservation of monuments. Sci. Total Environ. 167, 295-304. crossref(new window)

7.
Do, J. G., Song, H., So, H. S. and Soh, Y. S. 2005. Antifungal effects of cement mortar with two types of organic antifungal agents. Cem. Concr. Res. 35, 371-376. crossref(new window)

8.
Ghosh, P., Mandal, S., Chattopadhyay, B. D. and Pal, S. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35, 1980-1983. crossref(new window)

9.
Ghosh, S., Biswas, M., Chattopadhyay, B. D. and Mandal, S. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Comp. 31, 93-98. crossref(new window)

10.
Gu, J. D., Ford, T. E., Berke, N. S. and Mitchell, R. 1998. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegradation 41, 101-109. crossref(new window)

11.
Hammes, F., Boon, N., Villiers, J. D., Verstraete, W. and Siciliano, S. D. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69, 4901-4909. crossref(new window)

12.
Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O. and Schlangena, E. 2010. Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36, 230-235. crossref(new window)

13.
Min, S. G., Kim, J. H., Kim, T. W. and Kim, K. N. 2003. Isolation and identification of protease producing bacteria in kimchi. Kor. J. Food Sci. Technol. 35, 666-670.

14.
Nica, D., Davis, J. L., Kirby, L., Zuo, G. and Roberts, D. J. 2000. Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers. Int. Biodeterior. Biodegradation 46, 61-68. crossref(new window)

15.
Nolan, E., Basheer, P. A. M. and Long, A. E. 1995. Effects of three durability enhancing products on some physical properties of near surface concrete. Constr. Build. Mater. 9, 267-272. crossref(new window)

16.
Pangallo, D., Chovanová, K., Simonovicová, A. and Ferianc, P. 2009. Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can. J. Microbiol. 55, 277-287. crossref(new window)

17.
Park, J. M., Park, S. J. and Ghim, S. Y. 2011. Isolation of fungal deteriogens inducing aesthetical problems and antifungal calcite forming bacteria from the tunnel and their characteristics. Kor. J. Microbiol. Biotechnol. 39, 287-293.

18.
Park, S. J., Lee, N. Y., Kim, W. J. and Ghim, S. Y. 2010. Application of bacteria isolated from Dokdo for improving compressive strength and crack remediation of cement-sand mortar. J. Microbiol. Biotechnol. 20, 782-788.

19.
Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J. and Ghim, S. Y. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20, 782-788.

20.
Park, S. J., Park, J. M., Kim, W. J. and Ghim, S. Y. 2012. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar. J. Microbiol. Biotechnol. 22, 1568-1574. crossref(new window)

21.
Park, J. M., Park, S. J., Kim, W. J. and Ghim, S. Y. 2012. Application of antifungal CFB to increase the durability of cement mortar. J. Microbiol. Biotechnol. 22, 1015-1020. crossref(new window)

22.
Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Arthrobacter nicotianae KNUC2100 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027945.

23.
Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Bacillus aryabhattai KNUC205 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0019787.

24.
Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Bacillus thuringiensis KNUC2103 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027951.

25.
Park, J. M., Park, S. J. and Ghim, S. Y. 2012. Stenotrophomonas maltophila KNUC2106 and a cement additive for durability improvement and crack reparing of cement paste or concrete containing the same. Korea patent 10-2012-0027940.

26.
Park, S. K., Kim, J. H. J., Nam, J. W., Phan, H. D. and Kim, J. K. 2009. Development of anti-fungal mortar and concrete using Zeolite and Zeocarbon microcapsules. Cem. Concr. Compo. 31, 447-453. crossref(new window)

27.
Ramacjandran, S. K., Ramakrishnan, V. and Bang, S. S. 2001. Remediation of concrete using microorganism. ACI Mater. 98, 3-9.

28.
Schultze-Lam, S., Fortin, D., Davis, B. S. and Beveridge, T. J. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132, 171-181. crossref(new window)

29.
Sofía, B., Lavin, P., Perdomo, I., Saravia, S. G. D. and Guiamet, P. 2012. Determination of indoor air quality in archives and biodeterioration of the documentary heritage. ISRN Microbiol. 10, 1-10

30.
Stocks-Fischer, S., Galinat, J. K. and Bang, S. S. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31, 1563-1571. crossref(new window)

31.
Teather, R. M. and Wood, P. J. 1982. Use of Congo red polysaccharide interactions complex formation between Congo red and polysaccharide in detection and assay of polysaccharide hydrolases. Meth. Enzymol. 160, 59-74.

32.
Warscheid, Th. and Braams, J. 2010. Biodeterioration of stone: a review. Int. Biodeterior. Biodegradation 46, 343-368.

33.
Tiano, P., Biagiotti, L. and Mastromei, G. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J. Microbiol. Methods 36, 139-145. crossref(new window)

34.
Tittelboom, K. V., Belie, N. D., Muynck, W. D. and Verstraete, W. 2010. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157-166. crossref(new window)