Advanced SearchSearch Tips
Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 5,  2015, pp.487-495
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.5.487
 Title & Authors
Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707
Kang, Taekyeong; Kim, Sang Ho; Jung, Mi Ja; Cho, Yong Kweon;
  PDF(new window)
We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a value of 1.57 mM and a value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with values of 55.7 mM, 0.22 mM, and 15.64 mM, and values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. was the best competitive inhibitor with a value of . , , , and were also competitive inhibitors with values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.
Chemical modification;pH-dependent kinetic parameters;protocatechuate 3;4-dioxygenase;Pseudomonas pseudoalcaligenes KF707;
 Cited by
Ashie, I. N. A., Simpson, B. K. and Smith, J. P. 1996. Mechanisms for controlling enzymatic reactions in foods. Crit. Rev. Food Sci. Nutr. 36, 1-30.

Bedrosian, K., Nelson, A. I. and Seinberg, M. P. 1959. Effect of borates and other inhibitors on enzymatic browning in apple tissues. Food Technol. 13, 722-726.

Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. crossref(new window)

Cho, Y. K. and Cook, P. F. 1988. Inactivation of pyrophosphate- dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5’-phosphate. J. Biol. Chem. 263, 5135-5140.

Cleland, W. W. 1979. Statistical analysis of enzyme kinetic data. Meth. Enzymol. 63, 103-138. crossref(new window)

Dagleys, S. 1984. Microbial degradation of aromatic compounds. Devel. Ind. Microbiol. 25, 53-65.

Davis, M. L., Wasinger, E. C., Westre, T. E., Zaleski, J. M., Orville, A. M., Lipscomb, J. D., Hedman, B., Hodgson, K. O. and Solomon, E. I. 1999. Spectroscopic investigation of reduced protocatechuate 3,4-dioxygenase: charge-induced alterations in the active site iron coordination environment. Inorg. Chem. 38, 3676-3683. crossref(new window)

Durham, D. R., Stirling, L. A., Ornston, L. N. and Perry, J. J. 1980. Intergeneric evolutionary homology revealed by the study of protocatechuate 3,4-dioxygenase from Azotobacter vinelandii. Biochemistry 19, 149-155. crossref(new window)

Elgren, T. E., Orville, A. M., Kelly, K. A., Lipscomb, J. D., Ohlendorf, D. H. and Que, L. Jr. 1997. Crystal structure and resonance raman studies of protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate. Biochemistry 36, 11504-11513. crossref(new window)

Engel, P. C. 1996. Enzymology LabFax. pp. 175-190, Academic Press: San Diego, CA, USA.

Frazee, R. W., Orville, A. M., Dolbeare, K. B., Yu, H., Ohlendorf, D. H. and Lipscomb, J. D. 1998. The axial tyrosinate Fe3+ ligand in protocatechuate 3,4-dioxygenase influences substrate binding and product release: evidence for new reaction cycle intermediates. Biochemistry 37, 2131-2144. crossref(new window)

Friedman, M. 1996. Food browning and its prevention: an overview. J. Agric. Food Chem. 44, 631-653. crossref(new window)

Fujisawa, H., Hiromi, K., Uyeda, M., Okuno, S., Nozaki, M. and Hayaishi, O. 1972. Protocatechuate 3,4 dioxygenase III. An oxygenated form of the enzyme as reaction intermediate. J. Biol. Chem. 247, 4422-4428.

Joslyn, M. A. and Ponting, J. D. 1951. Enzyme-catalyzed oxidative browning of fruit products. Adv. Food Res. 3, 1-44. crossref(new window)

Kahn, V. 1985. Effect of proteins, protein hydrolyzates and amino acids on o-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana. J. Food Sci. 50, 111-115.

Kelly, S. H. and Finkle, B. J. 1969. Action of a ring-cleaving oxygenase in preventing oxidase darkening of apple juice. J. Sci. Food Agr. 20, 629-632. crossref(new window)

Kurahashi, T., Oda, K., Sugimoto, M., Ogura, T. and Fujii, H. 2006. Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3,4- dioxygenase. Inorg. Chem. 45, 7709-7721. crossref(new window)

Lim, J. C., Gruschus, J. M., Kim, G., Berlett, B. S., Tjandra, N. and Levine, R. L. 2012. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. J. Biol. Chem. 287, 25596-601. crossref(new window)

Lukes, B., O'brien, T. J. and Scanlan, R. A. 1980. Residual sulfur dioxide in finished malt: Colorimetric determination and relation to N-nitrosodimethylamine. Am. Soc. Brew. Chem. J. 38, 146-148.

Lundblad, R. L. and Noyes, C. M. 1984a. Chemical reagents for protein modification. Vol I, pp. 1-166, CRC Press: Boca Raton, FL, USA.

Lundblad, R. L. and Noyes, C. M. 1984b. Chemical reagents for protein modification. Vol II, pp. 1-169, CRC Press: Boca Raton, FL, USA.

Mapson, L. W. and Tomalin, A. W. 1961. Preservation of peeled potato. Ⅲ. The inactivation of phenolase by heat. J. Sci. Food Agr. 12, 54-58. crossref(new window)

Martinez, M. V. and Whitaker, J. R. 1995. The biochemistry and control of enzymatic browning. Trends Food Sci. Technol. 6, 195-200. crossref(new window)

Montgomery, M. W. 1983. Cysteine as an inhibitor of browning in pear juice concentrate. J. Food Sci. 48, 951-952. crossref(new window)

Ohlendorf, D. H., Orville, A. M. and Lipscomb, J. D. 1994. Structure of protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa at 2.15 Å resolution. J. Mol. Biol. 244, 586-608. crossref(new window)

Orville, A. M., Lipscomb, J. D. and Ohlendorf, D. H. 1997a. Crystal structures of substrate and substrate analog complexes of protocatechuate 3,4-dioxygenase: endogenous Fe3+ ligand displacement in response to substrate binding. Biochemistry 36, 10052-10066. crossref(new window)

Orville, A. M., Elango, N. E., Lipscomb, J. D. and Ohlendorf, D. H. 1997b. Structures of competitive inhibitor complexes of protocatechuate 3,4-dioxygenase: multiple exogenous ligand binding orientations within the active site. Biochemistry 36, 10039-10051. crossref(new window)

Ponting, J. D., Jackson, R. and Watters, G. 1971. Refrigerated apple slices. Effects of pH, sulfites and calcium on texture. J. Food Sci. 36, 349-350. crossref(new window)

Price, N. C. and Stevens, L. 1998. Fundamentals of Enzymology. Oxford University Press: New York, NY, USA.

Sim, H. W., Jung, M. J. and Cho, Y. K. 2013. Purification and Characterization of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. J. Kor. Soc. App. Biol. Chem. 56, 401-408. crossref(new window)

True, A. E., Orville, A. M., Pearce, L. L., Lipscomb, J. D. and Que, L. Jr. 1990. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase. Biochemistry 29, 10847-10854. crossref(new window)

Valley, M. P., Brown, C. K., Burk, D. L., Vetting, M. W., Ohlendorf, D. H. and Lipscomb, J. D. 2005. Roles of the equatorial tyrosyl iron ligand of protocatechuate 3,4-dioxygenase in catalysis. Biochemistry 44, 11024-11039. crossref(new window)

Vetting, M. W., D'argenio, D. A., Ornston, L. N. and Ohlendorf, D. H. 2000. Structure of acinetobacter strain adp1 protocatechuate 3,4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 39, 7943-7955. crossref(new window)

Whitaker, J. R. 1995. Polyphenol oxidase, pp. 271-307. In: Wong, D. W. S. (ed), Food enzymes structure and mechanism. Chapman & Hall: New York, NY, USA.