JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 5,  2015, pp.568-576
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.5.568
 Title & Authors
Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga
Ahamed, Sarker Anowarul Kabir; Kim, Jin-Joo; Choi, Tae-O; Choi, Tae-Jin;
  PDF(new window)
 Abstract
The marine microalga Pavlova viridis can grow fast and has the ability to accumulate essential nutrients for culturing marine animals, such as EPA and DHA, and it has been used as food for raring larval fish and prawn. The symbiotic relationship between the flagellate microalga Pavlova viridis and its associated bacteria was investigated. An axenic culture of P. viridis was obtained by repeated treatment of the microalga with an antibiotic cocktail. The axenic status was confirmed after sub-culturing three times in a sterile f/2 medium without an antibiotic. The axenic alga was then co-inoculated with five bacteria, arbitrarily designated as I1–I5, isolated from the alga to test the growth promotion of the algae. All bacterial strains promoted the growth of P. viridis, and bacterial isolate I3 was the most effective among the five bacteria tested. The cell number of P. viridis in the co-culture with I3 was significantly higher than that of the control culture. A sequence analysis of the 16S rRNA gene isolated from I3 revealed a 97% nucleotide sequence similarity to that of Citrobacter sp. The growth of strain I3 was also significantly enhanced by co-culturing with P. viridis, indicating a symbiotic relationship between the microalga and its associated bacterium. The association between the microalga and bacterium was confirmed by scanning electron microscopy.
 Keywords
Aaxenic;Citrobacter sp.;coculture;Pavlova viridis;symbiosis;
 Language
English
 Cited by
 References
1.
Agrawal, S. C. and Sarma, Y. S. 1982. Effects of nutrients present in bold's basal medium on the green alga Stigeoclonium pascheri. Folia Microbiol. 27, 131-137. crossref(new window)

2.
Barker, K. H. and Herson, D. S. 1978. Interactions between diatom Thallasiosira pseudonanna and an associated pseudomonadin a mariculture system. Appl. Environ. Microbiol. 35, 791-796.

3.
Brown, M. R. and Farmer, C. L. 1994. Riboflavin content of six species of microalgae used in mariculture. J. Appl. Phycol. 6, 61-65. crossref(new window)

4.
Brown, M. R., Jeffrey, S. W., Volkman, J. K. and Dunstan, G. A. 1997. Nutritional properties of microalgae for mariculture. Aquaculture 151, 315-331. crossref(new window)

5.
Chen, B. L., Huang, Q., Lin, X. J., Shi, Q. and Wu, S. 1998. Accumulation of Ag, Cd, Co, Cu, Hg, Ni, and Pb in Pavlova viridis Tseng (Haptophyceae). J. Appl. Phycol. 10, 371-376. crossref(new window)

6.
Cho, J. Y., Choi, J. S., Kong, I. S., Park, S. I., Kerr, R. G. and Hong, Y. K. 2002. A procedure for axenic isolation of the marine microalga Isochrysis galbana from heavily contaminated mass cultures. J. Appl. Phycol. 14, 385-390. crossref(new window)

7.
Connell, L. and Cattolico, R. A. 1996. Fragile algae: axenic culture of field-collected samples of Heterosigma carterae. Mar. Biol. 125, 421-426. crossref(new window)

8.
Cole, J. J. 1982. Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13, 291-314. crossref(new window)

9.
Croft, M. T., Lawrence, A. D., Raux-Deery, E., Warren, M. J. and Smith, A. G. 2005. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 483, 90-93.

10.
Ferrier, M., Martin, J. L. and Rooney-Varga, J. N. 2002. Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy. J. Appl. Microbiol. 92, 706-716. crossref(new window)

11.
Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A. and Olsen. G. J. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74, 2461-2470. crossref(new window)

12.
Fukami, K., Nishijima, T. and Ishida, Y. 1997. Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358, 185-191. crossref(new window)

13.
Gouveia, L., Batista, A. P., Suousa, I., Raymuado, A. and dan Bandarra, N. M. 2008. Microalgae in novel food products, pp. 75-111. In: K. N. Papadopoulos (ed.), Food chem istryresearch developments: Nova Science Publishers: NY, USA.

14.
Guillard, R. L. and Ryther, J. H. 1962. Studies of marine planktonic dioatoms: I. Cyclotella nana Hustedt and Dettonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239. crossref(new window)

15.
Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29-60. In: Smith, W. L. and Chanley, M. H. (eds.), Culture of marine invertebrate animals: Plenum Press: NY. USA.

16.
Hallmann, A. 2007. Algal transgenics and biotechnology. Transgenic Plant J. 1, 81-98.

17.
Hong, J. W., Choi, H. G., Kang, S. H. and Yoon, H. S. 2010. Axenic purification and cultivation of an Arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae-based biofuel. Algae 25, 99-104. crossref(new window)

18.
Jones, A. K. 1982. The interaction of algae and bacteria, pp.189-247. In: Bull, A. T. and Slater, J. H. (eds.), Microbial Interactions and Communities: Academic Press: London. UK.

19.
Lu, K. H. and Lin, X. 2000. Screening of fatty acid composition of the 13 microalgae and their application in artificial feeding of mitten crab. J. Ningbo Univ. (NSEE) 14, 27-32.

20.
Park, Y., Je, K. W., Lee, K., Jung, S. E. and Choi, T. J. 2008. Growth promotion of Chlorella ellipsoidea by co-inoculation with Brevundimonas sp. isolated from the microalga. Hydrobiologia 598, 219-228. crossref(new window)

21.
Riquelme, C. E., Fukami, K. and Ishida, Y. 1988. Effects of bacteria on the growth of a marine diatom, Asterionella glacialis. Bull. Japan Soc. Microbiol. Ecol. 3, 29-34. crossref(new window)

22.
Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87-96. crossref(new window)

23.
Stanier, R. Y., Kunisawa, R., Mandel, M. and Cohen-Bazire, G. 1971. Purification and properties of unicellular bluegreen algae (order Chroococcales). Bacteriol. Rev. 35, 171-205.

24.
Suminto, I. and Hirayama, K. 1996. Effects of bacterial coexistence on the growth of a marine diatom Chaetoceros gracilis. Fisheries Sci. 62, 40-43.

25.
Suminto, I. and Hirayama, K. 1997. Application of a growthpromoting bacteria for stable mass culture of three marine microalgae. Hydrobiologia 358, 223-230. crossref(new window)

26.
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. and Garland. C. D. 1989. Fatty acids and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219-240. crossref(new window)

27.
Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., Saiki, H. and Tanaka, H. 2005. Symbiotic association in Chlorella culture. FEMS Microbiol. Ecol. 51, 187-196. crossref(new window)

28.
Watanabe, K., Imase, M., Sasaki, K., Ohmura, N., Saiki, H. and Tanaka, H. 2006. Composition of the sheath produced by the green alga Chlorella sorokiniana. Lett. Appl. Microbiol. 42, 538-543 crossref(new window)