Advanced SearchSearch Tips
The Paradox of the Plankton
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 5,  2015, pp.601-606
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.5.601
 Title & Authors
The Paradox of the Plankton
Lee, Hak Young; Moon, Sung-Gi; Huh, Man-Kyu;
  PDF(new window)
Hutchinson (1961) proposed that the large number of species in most plankton communities is remarkable in review of the competitive exclusion principle, which suggests that in homogeneous, well-mixed environments species that compete for the same resources cannot coexist. The principle of competitive exclusion would lead us to conclude that only a few species could coexist in such circumstances. Nevertheless, numerous competing species in most natural habitats are able to coexist, while generally only few resources (niches) limit these communities. It is coined “the paradox of plankton” by Hutchinson. We reviewed some literature of the proposed solutions and give a brief overview of the mechanisms proposed so far. The proposed mechanisms that we discuss mainly include spatial and temporal heterogeneity in physical and biological environment, externally imposed or self-generated spatial segregation, horizontal mesoscale turbulence of ocean characterized by coherent vortices, oscillation and chaos generated by several internal and external causes, stable coexistence and compensatory dynamic under fluctuating temperature in resource competition, and finally the role of toxin-producing phytoplankton in maintaining the coexistence and biodiversity of the overall plankton populations. Especially we sited Roy and Chattopadhyay’s reviews and their toxin-producing hypothesis by phytoplankton. This review may be some information to study plankton communities and effect to put the solutions to the paradox that have been proposed over the years into perspective.
Competitive exclusion;Hutchinson;paradox of plankton;plankton communities;Roy and Chattopadhyay;
 Cited by
Arneodo, A., Coullet, P., Peyraud, J. and Tresser, C. 1982.Strange attractors in Volterra equations for species in competition. J. Math. Biol. 14, 153-157. crossref(new window)

Atkinson, W. D. and Shorrocks, B. 1981. Competition on a divided and ephemeral resource: a simulation model. J. Anim. Ecol. 50, 461-471. crossref(new window)

Bolker, B., Holyoak, M., Krivan, V., Rowe, L. and Schmitz, O. 2003. Connecting theoretical and empirical studies of trait mediated interactions. Ecology 84, 1101-1114. crossref(new window)

Bracco, A., Provenzale, A. and Scheuring, I. 2000. Mesoscale vortices and the paradox of the plankton. Proc. R. Soc. Lond. B. 267, 1795-1800. crossref(new window)

Descamps-Julien, B. and Gonzalez, A. 2005. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815-2824. crossref(new window)

Doveri, F. M., Scheffer, S., Rinaldi, S., Muratori, S. andKuznetsov, Y. A. 1993. Seasonality and chaos in a plankton-fish model. Theor. Popul. Biol. 43, 159-183. crossref(new window)

Ebenhöh, W. 1988. Coexistence of an unlimited number of algal species in a model system. Theor. Popul. Biol. 34, 130-144. crossref(new window)

Gragnani, A., Scheffer, M. and Rinaldi, S. 1999. Top–down control of cynobacteria: a theoretical analysis. Am. Nat. 153, 59-72. crossref(new window)

Hassel, M. P., Comins, H. N. and May, R. M., 1994. Species coexistence and self-organizing spatial dynamics. Hydrobiologia 344, 87-102.

Hardin, G. 1960. The competitive exclusion principle. Science 131, 1292-1298. crossref(new window)

Hairston, N. G. 1959. Species abundance and community organization. Ecology 40, 404-416. crossref(new window)

Huisman, J. and Weissing, F. J. 1999. Biodiversity of plankton by species oscillation and chaos. Nature 402, 407-410. crossref(new window)

Huisman, J., Van Oostveen, P. and Weissing, F. J. 1999. Species dynamics in phytoplankton blooms: incomplete mixing and competition for light. Am. Nat. 154, 46-68. crossref(new window)

Huisman, J., Johansson, A. M., Folmer, E. O. and Weissing, F. J. 2001. Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4, 408-411. crossref(new window)

Huisman, J., Pham Thi, N. N., Karl, D. M. and Sommeijer, B. 2006. Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439, 322-325. crossref(new window)

Hutchinson, G. E. 1961. The paradox of the plankton. Am. Nat. 95, 137-145. crossref(new window)

Kozlowsky-Suzuki, B., Karjalainen, M., Lehtiniemi, M.,Engström-Öst, J., Koski, M. and Carlsson, P. 2003. Feeding, reproduction and toxin accumulation by the copepods Acartia bifilosa and Eurytenora affinis in the presence of the toxic cynobacterium Nodularia Spumigena. Mar. Ecol. Prog. 249, 237-249. crossref(new window)

Krivan, V. and Schmitz, O. J. 2004. Trait and density mediated indirect interactions in simple food webs. Oikos 107, 239-250. crossref(new window)

Levins, R. 1979. Coexistence in a variable environment. Am. Nat. 114, 765-783. crossref(new window)

MacArther, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests. Ecology 39, 599-619. crossref(new window)

McCauley, S. J., Rowe, L. and Fortin, M. J. 2011. The deadlyeffects of "nonlethal" predators. Ecology 92, 2043-2048. crossref(new window)

Malchow, H. 1993. Spatio-temporal pattern formation in nonlinear non-equilibrium plankton dynamics. Proc. R. Soc. B. 251, 103-109. crossref(new window)

Malchow, H. 2000. Non-equilibrium spatio-temporal patterns in models of non-linear plankton Dynamics. Fresh. Biol. 45, 239-251. crossref(new window)

Petrovskii, S. V. and Blackshaw, R. 2003. Behaviourally structured populations persist longer under harsh environmental conditions. Ecol. Lett. 6, 455-462. crossref(new window)

Reynolds, C. S. 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249, 157-171. crossref(new window)

Richerson, P., Armstrong, R. and Goldman, C. R. 1970.Contemporaneous disequilibrium, a new hypothesis to explain the "paradox of the plankton". Proc. Natl. Acad. Sci. USA 67, 1710-1714. crossref(new window)

Riley, G. A, Stommel, H. and Bumpus, D. F. 1949. Quantitative ecology of the plankton of the western North Atlantic. Bull Bingham Oceanogr Coll. 12, 1-169.

Roy, S., Alam, S. and Chattopadhyay, J. 2006. Competitive effects of toxin-producing phytoplankton on the overall plankton population in the Bay of Bengal. Bull. Math. Biol. 68, 2303-2320. crossref(new window)

Roy, S. and Chattopadhyay, J. 2007a. Towards a resolution of ‘the paradox of the plankton’: A brief overview of the proposed mechanisms. Ecological Complexity 4, 26-33. crossref(new window)

Roy, S. and Chattopadhyay, J. 2007b. Toxin-alleopathy among phytoplankton species prevents competition exclusion. J. Biol. Syst. 15, 1-21. crossref(new window)

Scheffer, M., Rinaldi, S., Huisman, J. and Weissing, F. J.2003. Why phytoplankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491, 9-18. crossref(new window)

Stanca, E., Roselli, L. Cellamare, M. and Basset, A. 2013. Phytoplankton composition in the coastal Magnetic Island lagoon, Western Pacific Ocean (Australia) TWB, Transit. Waters Bull. 7, 145-158.

Tilman, D. 1981. Test of resource competition theory using four species ok Lake Michigan algae. Ecology 62, 802-815. crossref(new window)

Waldrop, M. P. and Firestone, M. K. 2004. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67, 235-248. crossref(new window)

Williamson, C. E., Sanders, R. W., Moeller, R. E. andStutzman, P. L. 1996. Utilization of subsurface food resources for zooplankton reproduction: Implications for diel vertical migration theory. Limnol. Oceanogr. 41, 224-233. crossref(new window)