Advanced SearchSearch Tips
Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp.,
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 5,  2015, pp.607-614
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.5.607
 Title & Authors
Anti-cancer Properties and Relevant Mechanisms of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp.,
Jeong, Jin-Woo; Choi, Yung Hyun;
  PDF(new window)
Cancers are the largest cause of mortality and morbidity all over the world. Cordycepin, an adenosine analog, is a major functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. Over the last decade, this compound has been reported to possess many pharmacological properties, such as an ability to enhance immune function, as well as anti-inflammatory, antioxidant and anti-cancer effects. Recently, numerous studies have reported interesting properties of cordycepin as a chemopreventive agent as well. There is an accumulating body of experimental evidences suggesting that cordycepin impedes cancer progression by promoting apoptosis, inducing cell cycle arrest, modulating intracellular signaling pathways, and inhibiting invasion and metastasis of cancer cells. In many cancer cell lines, cordycepin inhibits growth and cell cycle progression by inducing arrest of the G2/M phase, resulting from the inhibition of retinoblastoma protein phosphorylation and induction of cyclin-dependent kinase inhibitors. To induce apoptosis, cordycepin activates the extrinsic and intrinsic pathways, which promotes reactive oxygen species generation and the downstream activation of kinase cascades. Cordycepin also can activate alternative pathways to cell death such autophagy. In addition, cordycepin can inhibit the pro-metastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the nuclear factor-kappa B and activated protein-1 signaling pathways. In this review, we summarized the variety of action mechanisms by which cordycepin may mediate chemopreventive effects on cancer and discussed the potential of this natural product as a promising therapeutic inhibitor of cancer development.
Apoptosis;cancer;cell cycle;cordycepin;metastasis;
 Cited by
Bosch, F. X., Ribes, J., Diaz, M. and Cleries, R. 2004. Primary liver cancer: worldwide incidence and trends. Gastroenterology 127, 5-16. crossref(new window)

Choi, S., Lim, M. H., Kim, K. M., Jeon, B. H., Song, W. O. and Kim, T. W. 2011. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257, 165-173. crossref(new window)

Coqueret, O. 2003. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 13, 65-70. crossref(new window)

Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.

Dulić, V., Lees, E. and Reed, S. I. 1992. Association of human cyclin E with a periodic G1-S phase protein kinase. Science 257, 1958-1961. crossref(new window)

Elledge, S. J., Richman, R., Hall, F. L., Williams, R. T., Lodgson, N. and Harper, J. W. 1992. Cdk2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before Cdc2 in the cell cycle. Proc. Natl. Acad. Sci. USA 89, 2907-2911. crossref(new window)

Han, S. I., Kim, Y. S. and Kim, T. H. 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB Rep. 41, 1-10. crossref(new window)

He, W., Zhang, M. F., Ye, J., Jiang, T. T., Fang, X. and Song, Y. 2010. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B 11, 654-660.

Holcik, M., Gibson, H. and Korneluk, R. G. 2001. XIAP: apoptotic brake and promising therapeutic target. Apoptosis 6, 253-261. crossref(new window)

Huerta, S., Goulet, E. J., Huerta-Yepez, S. and Livingston, E. H. 2007. Screening and detection of apoptosis. J. Surg. Res. 139, 143-156. crossref(new window)

Imesch, P., Hornung, R., Fink, D. and Fedier, A. 2011. Cordycepin (3′-deoxyadenosine), an inhibitor of mRNA polyadenylation, suppresses proliferation and activates apoptosis in human epithelial endometriotic cells in vitro. Gynecol. Obstet. Invest. 72, 43-49. crossref(new window)

Jang, K. J., Kwon, G. S., Jeong, J. W., Kim, C. H., Yoon, H. M., Kim, G. Y., Shim, J. H., Moon, S. K., Kim, W. J. and Choi, Y. H. 2015. Cordyceptin induces apoptosis through repressing hTERT expression and inducing extranuclear export of hTERT. J. Biosci. Bioeng. 119, 351-357. crossref(new window)

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman. D. 2011. Global cancer statistics. CAA Cancer J. Clin. 61, 69-90. crossref(new window)

Jeong, J. W. and Choi, Y. H. 2014. Cordycepin inhibits migration and invasion of HCT116 human colorectal carcinoma cells by tightening of tight junctions and inhibition of matrix metalloproteinase activity. J. Kor. Soc. Food Sci. Nutr. 43, 86-92. crossref(new window)

Jeong, J. W., Jin, C. Y., Park, C., Han, M. H., Kim, G. Y., Moon, S. K., Kim, C. G., Jeong, Y. K., Kim, W. J., Lee, J. D. and Choi, Y. H. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int. J. Oncol. 40, 1697-704.

Jeong, J. W., Jin, C. Y., Park, C., Hong, S. H., Kim, G. Y., Jeong, Y. K., Lee, J. D., Yoo, Y. H. and Choi, Y. H. 2011. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol. In Vitro 25, 817-824. crossref(new window)

Jung, S. M., Park, S. S., Kim, W. J. and Moon, S. K. 2012. Ras/ERK1 pathway regulation of p27KIP1-mediated G1-phase cell-cycle arrest in cordycepin-induced inhibition of the proliferation of vascular smooth muscle cells. Eur. J. Pharmacol. 681, 15-22. crossref(new window)

Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Japan 23, 329-364.

Koç, Y., Urbano, A. G., Sweeney, E. B. and McCaffrey, R. 1996. Induction of apoptosis by cordycepin in ADA-inhibited TdT-positive leukemia cells. Leukemia 10, 1019-1024.

Koff, A., Giordano, A., Desai, D., Yamashita, K., Harper, J. W., Elledge, S., Nishimoto, T., Morgan, D. O., Franza, B. R. and Roberts, J. M. 1992. Formation and activation of a cyclin E-Cdk2 complex during the G1 phase of the human cell cycle. Science 257, 1689-1694. crossref(new window)

Lamszus, K., Kunkel, P. and Westphal, M. 2003. Invasion as limitation to antiangiogenic glioma therapy. Acta. Neurochir. Suppl. 88, 169-177.

Lazebnik, Y. A., Kaufmann, S. H., Desnoyers, S., Poirier, G. G. and Earnshaw, W. C. 1994. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346-347. crossref(new window)

Lee, E. J., Kim, W. J. and Moon, S. K. 2010. Cordycepin suppressesTNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother. Res. 24, 1755-1761. crossref(new window)

Lee, H. H., Jeong, J. W., Lee, J. H., Kim, G. Y., Cheong, J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2013. Cordycepin increases sensitivity of ep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol. Rep. 30, 1257-1264. crossref(new window)

Lee, H. H., Kim, S. O., Kim, G. Y., Moon, S. K., Kim, W. J., Jeong, Y. K., Yoo, Y. H. and Choi, Y. H. 2014. Involvement of autophagy in cordycepin-induced apoptosis in human prostate carcinoma LNCaP cells. Environ. Toxicol. Pharmacol. 38, 239-250. crossref(new window)

Lee, H. H., Park, C., Jeong, J. W., Kim, M. J., Seo, M. J., Kang, B. W., Park, J. U., Kim, G. Y., Choi, B. T., Choi, Y. H. and Jeong, Y. K. 2013. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen speciesmediated mitochondrial death pathway. Int. J. Oncol. 42, 1036-1044. crossref(new window)

Lee, H. J., Burger, P., Vogel, M., Friese, K. and Brüning, A. 2012. The nucleoside antagonist cordycepin causes DNA double strand breaks in breast cancer cells. Invest. New Drugs 30, 1917-1925. crossref(new window)

Lee, S. J., Kim, S. K., Choi, W. S., Kim, W. J. and Moon, S. K. 2009. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch. Biochem. Biophys. 490, 103-106. crossref(new window)

Lee, S. J., Moon, G. S., Jung, K. H., Kim, W. J. and Moon, S. K. 2010. c-Jun N-terminal kinase 1 is required for cordycepin-mediated induction of G2/M cell-cycle arrest via p21WAF1 expression in human colon cancer cells. Food Chem. Toxicol. 48, 277-283. crossref(new window)

Lee, S. Y., Debnath, T., Kim, S. K. and Lim, B. O. 2013. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem. Toxicol. 60, 439-447. crossref(new window)

Lee, S. Y., Kim, G. T., Roh, S. H., Song, J. S., Kim, H. J., Hong, S. S., Kwon, S. W. and Park, J. H. 2009. Proteomic analysis of the anticancer effect of ginsenoside Rg3 in human colon cancer cell lines. Biosci. Biotechnol. Biochem. 73, 811-816. crossref(new window)

Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489. crossref(new window)

Liang, Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241. crossref(new window)

Liao, H. F., Chen, Y. Y., Liu, J. J., Hsu, M. L., Shieh, H. J., Liao, H. J., Shieh, C. J., Shiao, M. S. and Chen, Y. J. 2003. Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion and metastasis. J. Agric. Food Chem. 51, 7907-7912. crossref(new window)

Liao, Y., Ling, J., Zhang, G., Liu, F., Tao, S., Han, Z., Chen, S., Chen, Z. and Le, H. 2015. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14, 761-771. crossref(new window)

Lui, J. C., Wong, J. W., Suen, Y. K., Kwok, T. T., Fung, K. P. and Kong, S. K. 2007. Cordycepin induced eryptosis in mouse erythrocytes through a Ca2+-dependent pathway without caspase-3 activation. Arch. Toxicol. 81, 859-8565. crossref(new window)

Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. crossref(new window)

Magnaghi-Jaulin, L., Groisman, R., Naguibneva, I., Robin, P., Lorain, S., Le Villain, J. P., Troalen, F., Trouche, D. and Harel-Bellan, A. 1998. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature 391, 601-605. crossref(new window)

Masciullo, V., Khalili, K. and Giordano, A. 2000. The Rb family of cell cycle regulatory factors: clinical implications. Int. J. Oncol. 17, 897-902.

Matsushime, H., Ewen, M. E., Strom, D. K., Kato, J. Y., Hanks, S. K., Roussel, M. F. and Sherr, C. J. 1992. Identification and properties of an atypical catalytic subunit (p34PSK-J3/Cdk4) for mammalian D type G1 cyclins. Cell 71, 323-334. crossref(new window)

Minshull, J., Golsteyn, R., Hill, C. S. and Hunt, T. 1990. The A- and B-type cyclin associated Cdc2 kinases in Xenopus turn on and off at different times in the cell cycle. EMBO J. 9, 2865-2875.

Morgan, D. O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261-291. crossref(new window)

Mullin, J. M. 1997. Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis. J. Exp. Zool. 279, 484-489. crossref(new window)

Nakamura, K., Konoha, K., Yoshikawa, N., Yamaguchi, Y., Kagota, S., Shinozuka, K. and Kunitomo, M. 2005. Effect of cordycepin (3'-deoxyadenosine) on hematogenic lung metastatic model mice. In Vivo 19, 137-141.

Noh, E. M., Youn, H. J., Jung, S. H., Han, J. H., Jeong, Y. J., Chung, E. Y., Jung, J. Y., Kim, B. S., Lee, S. H., Lee, Y. R. and Kim, J. S. 2010. Cordycepin inhibits TPA-induced matrix metalloproteinase-9 expression by suppressing the MAPK/AP-1 pathway in MCF-7 human breast cancer cells. Int. J. Mol. Med. 25, 255-260.

Obeyesekere, M. N., Tucker, S. L. and Zimmerman, S. O. 1994. A model for regulation of the cell cycle incorporating cyclin A, cyclin B and their complexes. Cell Prolif. 27, 105-113. crossref(new window)

Salvesen, G. S. and Duckett, C. S. 2002. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3, 401-410.

Schneeberger, E. E. and Lynch, R. D. 2004. The tight junction: a multifunctional complex. Am. J. Physiol. Cell. Physiol. 286, C1213-C1228. crossref(new window)

Schwartz, G. K. 2002. Cdk inhibitors: cell cycle arrest versus apoptosis. Cell Cycle 1, 122-123. crossref(new window)

Shi, P., Huang, Z., Tan, X. and Chen, G. 2008. Proteomic detection of changes in protein expression induced by cordycepin in human hepatocellular carcinoma BEL-7402 cells. Methods Find. Exp. Clin. Pharmacol. 30, 347-353. crossref(new window)

Stetler-Stevenson, W. G. 1990. Type Ⅳ collagenases in tumor invasion and metastasis. Cancer Metastasis Rev. 9, 289-303. crossref(new window)

Swift, J. G., Mukherjee, T. M. and Rowland, R. 1983. Intercellular junctions in hepatocellular carcinoma. J. Submicrosc. Cytol. 15, 799-810.

Thomadaki, H., Tsiapalis, C. M. and Scorilas, A. 2005. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol. Chem. 386, 471-480.

Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Günzel, D., Fromm, M., Kemler, R., Krieg, T. and Niessen, C. M. 2005. E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO J. 24, 1146-1156. crossref(new window)

Van Itallie, C. M. and Anderson, J. M. 2004. The molecular physiology of tight junction pores. Physiology 19, 331-338. crossref(new window)

Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149. crossref(new window)

Wang, B. J., Won, S. J., Yu, Z. R. and Su, C. L. 2005. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem. Toxicol. 43, 543-552. crossref(new window)

Wong, A. S. and Gumbiner, B. M. 2003. Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J. Cell Biol. 161, 1191-1203. crossref(new window)

Wu, W. C., Hsiao, J. R., Lian, Y. Y., Lin, C. Y. and Huang, B. M. 2007. The apoptotic effect of cordycepin on human OEC-M1 oral cancer cell line. Cancer Chemother. Pharmacol. 60, 103-108. crossref(new window)

Yoshikawa, N., Kunitomo, M., Kagota, S., Shinozuka, K. and Nakamura, K. 2009. Inhibitory effect of cordycepin on hematogenic metastasis of B16-F1 mouse melanoma cells accelerated by adenosine-5'-diphosphate. Anticancer Res. 29, 3857-3860.

Zhang, H. S., Gavin, M., Dahiya, A., Postigo, A. A., Ma, D., Luo, R. X., Harbour, J. W. and Dean, D. C. 2000. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and RbhSWI/SNF. Cell 101, 79-89. crossref(new window)

Zhu, J. L. and Liu, C. 1992. Modulating effects of extractum semen Persicae and cultivated Cordyceps hyphae on immuno-dysfunction of inpatients with posthepatitic cirrhosis. Chin. J. Integr. Med. 12, 207-210.