Advanced SearchSearch Tips
Development of Axenic Culture and Astaxanthin Production in Microalgae
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 7,  2015, pp.733-739
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.7.733
 Title & Authors
Development of Axenic Culture and Astaxanthin Production in Microalgae
Son, Min Chang; Lee, Dong-Jun; Park, Sejin; Kim, Min Sung; Lee, Chul Won; An, Won Gun;
  PDF(new window)
Microalgae are a renewable natural resource that requires only sunlight, carbon dioxide, phosphorus, and nitrogen for rapid growth. They produce a broad variety of basic chemical substances―such as vitamins, fatty acids and carotenoids―that have high added value potential for the pharmaceutical and food industries. The aim of this study was to develop axenic culture and to establish a cell growth assay for microalgae. A further experiment was carried out to determine the yield of astaxanthin derived from microalgae. The axenic culture was developed using a mixture of antibiotics [ampicillin (100 ), streptomycin (10 ), chloramphenicol (10 ), penicillin (10 ), neomycin (50 ), gentamycin (50 ), kanamycin (10 ), and nystatin (1.5 )] and then used to extract a variety of useful components from the microalgae. The optimal concentration for the antibiotic mixture was 1-3 percent. A spectrophotometric cell growth assay was also established. Astaxanthin was extracted from Haematococus lacustris with a yield of per 1 ml of culture medium. In conclusion, the axenic culture method developed here allows extraction of high-quality astaxanthin and other useful components from microalgae.
Antibiotics;astaxanthin;axenic culture;cell growth assay;microalgae;
 Cited by
Aarab, L., Perez-Camacho, A., Viera-Toledo, M. dP., de Vicose, G. C., Fernandez-Palacios, H. and Molina, L. 2012. Embryonic development and influence of egg density on early veliger larvae and effects of dietary microalgae on growth of brown mussel Pernaperna (L. 1758) larvae under laboratory conditions. Aquacult. Int. DOI 10.1007/s10499-012-9612-7. crossref(new window)

Ana, C., Mariela, G., Silvia, V., Maritza, H. and Nelson, G. 2003. Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biol. Res. 36, 343-357.

Bendich, A. 1991. Non vitamin a activity of carotenoids: immuno enhancement. Food Sci. Technol. Res. 2, 127-130. crossref(new window)

Bennedsen, M., Wang, X., Willen, R., Wadstrom, T. and Andersen, L. P. 1999. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol. Lett. 70, 185-189.

Campa-Córdova, A. I., Luna-González, A., Ascencio, F., Cortés-Jacinto, E. and Cáceres-Martínez, C. J. 2006. Effects of chloramphenicol, erythromycin, and furazolidone on growth of Isochrysisgalbana and Chaetocerosgracilis. Aquaculture 260, 145-150. crossref(new window)

Cho, J. Y., Choi, J. S., Kong, I. S., Park, S. I., Kerr, R. G. and Hong, Y. K. 2002. A procedure for axenic isolation of the marine microalga Isochrysisgalbana from heavily contaminated mass cultures. J. Appl. Phycol. 14, 385-390. crossref(new window)

Choi, S. P. and Sim, S. J. 2012. Microalgal bioconversion to organic resources form CO2. KIC News 15, 11-24.

Guerin, M., Huntley, M. E. and Olaizola, M. 2003. Haematococcusastaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210-216. crossref(new window)

Hagen, C. H., Braune, W. and Greulich, F. 1993. Functional aspects of secondary carotenoids in Haematococcuslacustris [Girod] Rostafinski (Volvocales) IV.Protection from photodynamic damage.J. Photochem. Photobiol. 20, 153-160. crossref(new window)

Jo, B. H. and Cha, H. J. 2010. Biodiesel production using microalgal marine biomass. KSBB J. 25, 109-115.

Ki, J. S., Cho, S. Y. and Han, M. S. 2006. Axenic Culture Method: A filtration technique to produce axenic cultures of the armoured Dinoflagellates. In: Hur S.B. (ed), Culture and application of useful microalgal. Life Science Publishing Co., 131-147.

Krinsky, N. I. 1989. Antioxidant functions of carotenoids. Free Radical Bio. Med. 7, 617-635. crossref(new window)

Kurashige, M., Okimasu, E., Inoue, M. and Utsumi, K. 1990. Inhibition of oxidative injury of biological membranes by astaxanthin. Physiol. Chem. Phys. Med. NMR 22, 27-38.

Kurihara, H. 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancermetastasis in mice treated with restraint stress. Life Sci. 70, 2509-2520. crossref(new window)

Lee, C. G. and Park, J. K. 2008. Immobilization of astaxanthin extracted from photosynthetic micro algae Haematococcus lacustris. J. Chitin Chitosan 13, 210-214.

Lim, M., Ong, B. L. and Wee, Y. C. 1992. A method of obtaining axenic cultures of Trentepohlia spp. (Chlorophyta). J. Phycol. 28, 567-569. crossref(new window)

Mclaren, J. S. 2005. Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol. 23, 339-342. crossref(new window)

Melinda, G., Clive, G., Robert, H. and Susan, H. 2011. Interference by pigment in the estimation of microalgal biomass concentration by optical density. J. Microbiol. Methods. 85, 119-123 crossref(new window)

Millie, D., Schofield, O., Kirkpatrick, G., Johnsen, G. and Evens, T. 2002. Using absorbance and fluorescence spectra to discriminate microalgae. Eur. J. Phycol. 37, 313-322. crossref(new window)

Naguib, Y. M. A. 2000. Antioxidant activities of astaxanthin and related carotenoids. J. Agr. Food Chem. 48, 1150-1154. crossref(new window)

Oh, H. M. and Ahn, C. Y. 2009. CO2 Fixation and biodiesel production using microalgae. KIC News 12, 12-20.

Olivier, S., Scragg, A. H. and Morrison, J. 2003. The effect of chlorophenols on the growth of Chlorella VT-1. Enzyme Micro. Techno. 32, 837-842. crossref(new window)

Park, J. I., Woo, H. C. and Lee, J. H. 2008. Production of bio-energy from marine algae: Status and perspectives. Kor. Chem. Eng. Res. 46, 833-844.

Palozza, P. and Krinsky, N. I. 1992. Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys. 297, 291-295. crossref(new window)

Park, J. K., Tran, P. N., Kim, J. D., Hong, S. J. and Lee, C. G. 2009. Carotenogenesis in Haematococcus lacustris: role of protein tyrosine phosphatases. J. Microbiol. Biotechnol. 19, 918-921. crossref(new window)

Patil, V., Kallqvist, T., Olsen, E., Vogt, G. and Gislerød, H. R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 15, 1-9. crossref(new window)

Rappé, M. S., Connon, S. A., Vergin, K. L. and Giovannoni, S. J. 2002. Cultivation of the ubiquitous SAR 11 marine bacterioplankton clade. Nature 418, 630-633. crossref(new window)

Reardon, E. M., Price, C. A. and Guillard, R. R. L. 1979. Harvest of marine microalgae by centrifugation in density gradients of “Percoll,” a modified silica sol. In: Reed E. (ed), Methodological Surveys in Biochemistry, Vol. 8. Ellis Norwood Publishing, Chichester, U.K., 171-175.

Rippka, R., Coursin, T., Hess, W., Lichtlé, C., Scanlan, D. J., Palinska, K.A., Iteman, I., Partensky, F., Houmard, J. and Herdman, M. 2000. Prochlorococcusmarinus Chisholm, et al. 1992 subsp. pastoris subsp. nov.strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). Int. J. Syst. Evol. Microbiol .50, 1833-1847. crossref(new window)

Rodrigues, L. H. R., Arenzon, A., Raya-Rodriguez, M. T. and Fontoura, N. F. 2011. Algal density assessed by spectrophotometry: A calibration curve for the unicellular algae Pseudokirchneriella subcapitata. J. Environ. Chem. Ecotoxicol. 3, 225-228.

Shimidzu, N., Goto, M. and Miki, W. 1996. Carotenoids as singlet oxygen quenchers in marine organisms. Fish. Sci. 62, 134-137. crossref(new window)

Strickland, J. and Parsons, T. 1972. A manual of seawater analysis. Bull. Fish Res. Bd. Can. 125, 1-310.

Yim, J. H. and Lee, H. K. 2004. Axenic culture of Gyrodiniumimpudicum strain KG03, a marine red-tide microalga that produces exopolysaccharide. J. Microb. 42, 305-314.

Yonouchi, J. 1993. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-cell activation. Nutr. Cancer 19, 269-280. crossref(new window)

Youn, J. Y. and Hur, S. B. 2007. Antibiotics and their optimum concentration for axenic culture of marine microalgae. Algae 22, 229-234. crossref(new window)