Advanced SearchSearch Tips
Anti-adipogenic, Anti-inflammatory, and Anti-proliferative Activities of Extracts from Lees and Nuruk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 7,  2015, pp.773-779
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.7.773
 Title & Authors
Anti-adipogenic, Anti-inflammatory, and Anti-proliferative Activities of Extracts from Lees and Nuruk
Son, Jung-Bin; Lee, Seung Hoon; Sohn, Ho-Yong; Shin, Woo-Chang; Kim, Jong-Sik;
  PDF(new window)
This study examined extracts from five different kinds of lees and nuruk and their organic solvent fractions in terms of several biological functions, such as anti-adipogenic, anti-inflammatory, and anti-proliferative activities. The anti-adipogenic activity was investigated by treating mouse pre-adipocyte 3T3-L1 cells with one extract (YE) and four organic solvent fractions (YAc, PAc, RAc, and WPAc) during adipogenesis. Among the treated samples, the ethyl acetate fraction of W-Ju lees (WPAc) showed the strongest anti-adipogenic effect, which was confirmed with oil red O staining and down-regulation of pro-adipogenic genes such as PPAR-gamma and SCD-1. Treatment with WPAc also reduced the expression of PPAR-gamma in a time-dependent manner. The effects of five different extracts were examined on nitric oxide (NO) production in mouse RAW 264.7 cells to determine anti-inflammatory activity. The ethyl acetate fraction of B-Ju lees (PAc) significantly decreased NO production in LPS-stimulated RAW 264.7 cells and it also inhibited NO production in a dose-dependent manner. The PAc fraction also dramatically decreased the viability of human colorectal cancer HCT116 cells in a dose-dependent manner. In addition, PAc increased the expression of NAG-1 and ATF3 genes in a dose dependent manner. Overall, these results indicate that lees and nuruk have several biological functions, including anti-adipogenic, anti-inflammatory, and anti-proliferative activities.
 Cited by
국내 전통주 주박의 이용과 유용생리활성,김미선;신우창;손호용;

생명과학회지, 2015. vol.25. 9, pp.1072-1079 crossref(new window)
Application of the Lees of Domestic Traditional Wine and its Useful Biological Activity, Journal of Life Science, 2015, 25, 9, 1072  crossref(new windwow)
Baek, S. J., Okazaki, R., Lee, S. H., Martinez, J., Kim, J. S., Yamaguchi, K., Mishina, Y., Martin, D. W., Shoieb, A., McEntee, M. F. and Eling, T. E. 2006. Nonsteroidal anti-inflammatory drug-activated gene-1 over expression in transgenic mice suppresses intestinal neoplasia. Gastroenterology 131, 1553-1560. crossref(new window)

Cha, C. C., Lee, H. W. and Choi, M. Y. 1998. Antioxidative and antimicrobial effects of nut species. Kor. J. Pharm. 29, 28-34.

Cho, K. N., Shkhthankar, M., Lee, S. H., Yoon, J. H. and Baek, S. J. 2007. Green tea catechin (−)-epicatechin gallate induces tumor suppressor protein ATF3 via EGR-1 activation. Eur. J. Cancer 43, 2404-2412. crossref(new window)

Chrysovergis, K., Wang, X., Kosak, J., Lee, S. H., Kim, J. S., Foley, J. F., Travlos, G., Singh, S., Baek, S. J. and Eling, T. E. 2014. NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int. J. Obes. 10, 1555-1564.

Kim, M. J. 2002. The study about traditional Nuruk. Kor. J. Food Sci. Technol. 9, 324-329.

Kim, S. M., and Cho, W. K. 2006. Effect of Takju (Korean turbid rice wine) lees on the serum glucose levels in streptozotocin-induced diabetic rats. J. Kor. Soc. Food Culture 21, 638-643.

Kim, T. Y., Jeon, T. W., Yeo, S. H., Kim, S. B., Kim, J. S. and Kwak, J. S. 2010. Antimicrobial, antioxidant and SOD-like activity effect of Jubak extracts. Kor. J. Food Nutr. 23, 299-305.

Kim, Y. J., Kim, B. H., Lee, S. Y., Kim, M. S., Pack, C. S., Rhee, M. S., Lee, K. H. and Kim, D. S. 2006. Screening of medicinal plants for cevelopment of fuctional food ingredients with anti-ovesity. J. Kor. Soc. Appl. Biol. Chem. 49, 221-226.

Kojda, G. and Harrison, D. 1999. Interactions between NO and reactive oxygen speices : pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc. Res. 43, 562-571. crossref(new window)

Kwak, H. Y., Lee, S. J., Lee, D. Y., Jung, N., Bae, N. H., Hong, S. Y., Kim, G. W. and Baek, N. I. 2008. Cytotoxic and anti-inflammatory activities of lipids from the Nuruk (Rhizopus oryzae KSD-815). J. Kor. Soc. Appl. Biol. Chem. 51, 142-147.

Lee, D. Y. 1968. The ecological studies on Aspergillus kawachii Kitahara. Kor. J. Microbiol. 6, 113-121.

Lee, H. J. 2003. The effect of chemo prevention of cancer by food ingredient. Kor. J. Food Sci. Technol. 25, 1-15.

Park, G. H., Park, J. H., Song, H. H., Eo, H. J., Kim, M. K., Lee, J. W., Lee, M. H., Cho, K. H., Lee, J. R., Cho, H. J. and Jeong, J. B. 2014. Anti-cancer activity of Ginger (Zingiber officinale) leef through the expression of activating transcription factor-3 in human colorectal cancer cells. BMC Complement Altern. Med. 14, 408-415. crossref(new window)

Piyanuch, R., Sukhthankar, M., Wandee, G. and Baek, S. J., 2007. Berberine, a natural isoquinoline alkanoid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 2, 230-240.

Surh, Y. J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780. crossref(new window)

Storck, M., Schilling, M., Burkardt, K., Prestel, R., Abendroth, D. and Hammer, C. 1994. Production of pro-inflammatory cytokines and adhesion molecules in ex-vivo xenogeneic kidney perfusion. Transpl. Int. 7, 647-649. crossref(new window)

Wink, D. A. and Mitchell, J. B. 1998. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic and cyto-protective mechaninsm of nitric oxide. Free Radic. Biol. Med. 25, 434-456. crossref(new window)

Yang, M. H., Kim, J., Khan I. A., Walker, L. A. and Khan, S. I. 2014. Nonsteroidal anti-inflammatory drug activated gene-1 (NAG-1) modulators from natural products as anti-cancer agents. Life Sci. 2, 75-84.