JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Antioxidative Effect and Neuraminidase Inhibitory Activity of Polyphenols Isolated from a New Korean Red Waxy Sorghum (Sorghum bicolor L. cv. Hwanggeumchalsusu)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 7,  2015, pp.786-794
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.7.786
 Title & Authors
Antioxidative Effect and Neuraminidase Inhibitory Activity of Polyphenols Isolated from a New Korean Red Waxy Sorghum (Sorghum bicolor L. cv. Hwanggeumchalsusu)
Ra, Ji-Eun; Seo, Kyung Hye; Ko, Jee Yeon; Lee, Mi-Ja; Kang, Hyeon Jung; Kim, Sun Lim; Chung, Ill-Min; Seo, Woo Duck;
  PDF(new window)
 Abstract
To identify nutritional and therapeutic properties of the new Korean red waxy sorghum cultivar ‘Hwanggeumchalsusu (HGC)’, we assayed the antioxidative effects and neuraminidase inhibitory activity. A methanol and 70% ethanol extract of HGC exhibited strong antioxidative effects (IC50 values of 83.2±2.7 for DPPH) and 85.6±2.4 μg/ml for ABTS) and neuraminidase (ND) inhibitory activity (IC50 values of 1.8±0.1 from extracted with methanol and 3.4±0.1 μg/ml from extracted with 70% ethanol) compared with that of the control, noncolored sorghum cultivar ‘Huinchalsusu (HC)’ (IC50> 200 μg/ml). We isolated nine polyphenols, Gallic acid (1), Protocatecuic acid (2), p-Hydroxy benzoic acid (3), Vanillic acid (4), Caffeic acid (5), Ferulic acid (6), Luteolinidin (7), Apigeninidin (8), Luteolin (9), from the HGC - methanol extract, to determine whether they were the active components Luteolinidin of one kind of polyphenols from the HGC, exhibited significant antioxidative effects (IC50 values of 10.9±0.5 μM for DPPH and 8.6 0.6 μM for ABTS) and neuraminidase (ND) inhibitory activity (IC50 values of 26.3±0.6) showed noncompetitive inhibition model. The binding affinity of the ND inhibitors in molecular docking experiments correlated with their ND inhibitory activities. These results suggest that HGC may be utilized to serve as a potential effective antioxidant and inhibitor of ND.
 Keywords
Antioxidative effect;apigeninidin;luteolinidin;neuraminidase inhibitor;Sorghum bicolor L.;
 Language
English
 Cited by
 References
1.
Amarowicz, R, Rahimi-Moghaddam, P., Barl, B. and Weil, J. A. 2004. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 84, 551-562. crossref(new window)

2.
Atkinson, W. and Hamborsky, J. 2012. Centers for Disease Control and Prevention. Influenza. In: Epidemiology and Prevention of Vaccine-Preventable Diseases. J. Cereal Sci. 12th edn, 151-171.

3.
Awika, J. M., Rooney, L. W. and Waniska, R. D. 2004. Properties of 3-deoxyanthocyanins from sorghum. J. Agric. Food Chem. 52, 4388-4394. crossref(new window)

4.
Basler, C. F. and Aguilar, P. V. 2008. Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res. 79, 166-178. crossref(new window)

5.
Bralley, E., Greenspan, P., Hargrove, J. L. and Hartle, D. K. 2008. Inhibition of hyaluronidase activity by select sorghum brans. J. Med. Food 11, 307-312. crossref(new window)

6.
Corfield, T. 1992. Bacterial sialidases--roles in pathogenicity and nutrition. Glycobiology 2, 509-521. crossref(new window)

7.
Dicko, M. H., Traore, A. S., Voragen, A. G. J. and Berkel, W. J. H. V. 2006. Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol Mol. Biol. Rev. 1, 21-38.

8.
Eropkin, M., Gudkova, T. M., Konovalova, N. I., Shchekanova, S. M., Iaglovskaia, I. B., Eropkina, E. M. and Kiselev, O. I. 2007. Antiviral action of some antioxidants/antihypoxants and their combinations with remantadine against human influenza A(H3N2) virus studied in in vitro models. Eksp Klin Farmakol 70, 33-37.

9.
Fang, N., Yu, S. and Prior, R. L. 2002. LC/MS/MS characterization of phenolic constituents in dried plums. J. Agric. Food Chem. 50, 3579-3585. crossref(new window)

10.
Halliwell, B. 2009. The wanderings of a free radical. Free Radic. Biol. Med. 46, 531-542. crossref(new window)

11.
Hossain, M. B., Rai, D. K., Brunton, N. P., Martin-Diana, A. B. and Barry-Ryan, C. 2010. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J. Agric. Food Chem. 58, 10576-10581. crossref(new window)

12.
Jeong, H. J., Ryu, Y. B., Park, S. J., Kim, J. H., Kwon, H. J., Kim, J. H., Park, K. H., Rho, M. C. and Lee, W. S. 2009. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenzaviral activities. Bioorg Med. Chem. 17, 6816-6823. crossref(new window)

13.
Kim, Y. S., Ryu, Y. B., Curtis-Long, M. J., Yuk, H. J., Cho, J. K., Kim, J. Y., Kim, K. D., Lee, W. S. and Park, K. H. 2011. Flavanones and rotenoids from the roots of Amorpha fruticosa L. that inhibit bacterial neuraminidase. Food Chem. Toxicol. 49, 1849-1856. crossref(new window)

14.
Morris, G. M., G, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. and Olxon, A. J. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639-1662. crossref(new window)

15.
Newstead, S. L., Potter, J. A., Wilson, J. C., Xu, G., Chien, C. H., Watts, A. G., Withers, S. G. and Taylor, G. L. 2008. The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J. Biol. Chem. 283, 9080-9088. crossref(new window)

16.
Potier, M., Mameli, L., Belisle, M., Dallaire, L. and Melancon, S. B. 1979. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal. Biochem. 94, 287-296. crossref(new window)

17.
Ryu, Y. B., Curtis-Long, M. J., Lee, J. W., Ryu, H. W., Kim, J. Y., Lee, W. S. and Park, K. H. 2009. Structural characteristics of flavanones and flavones from Cudrania tricuspidata for neuraminidase inhibition. Bioorg Med. Chem. Lett. 19, 4912-4915. crossref(new window)

18.
Schauer, R. 2004. Sialic acids: fascinating sugars in higher animals and man. Zoology (Jena) 107, 49-64. crossref(new window)

19.
Seo, W. D., Kim, J. Y., Han, S. I, Ra, J. E., Lee, J. H., Song, Y. C., Park, M. J., Kang, H. W., Oh, S. K. and Jang, K. C. 2011. Relationship of radical scavenging activities and anthocyanin contents in the 12 colored rice varieties in Korea. JABC 54, 693-699.

20.
Shih, C. H., Siu, S. O., Ng, R., Wong, E., Chiu, L. C., Chu, I. K. and Lo, C. 2007. Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 55, 254-259. crossref(new window)

21.
Tirzitis, G. and Bartosz, G. 2010. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim. Pol. 57, 139-142.

22.
Wolfender, J. L., W. P, Ndjoko, K., Hobby, K. R. and Major, H. J. 2000. Evaluation of Q-TOF-MS/MS and multiple stage IT-MS for the dereplication of flavonoids and related compounds in crude plant extracts. Analusis 28, 895-906. crossref(new window)

23.
Yang, L., Browning, J. D. and Awika, J. M. 2009. Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem. 57, 1797-1804. crossref(new window)

24.
Zhang, L., Cheng, Y. X., Liu, A. L., Wang, H. D., Wang, Y. L. and Du, G. H. 2010. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 15, 8507-8517 crossref(new window)