Advanced SearchSearch Tips
Classification of Antimicrobial Peptides among the Innate Immune Modulators
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 7,  2015, pp.833-838
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.7.833
 Title & Authors
Classification of Antimicrobial Peptides among the Innate Immune Modulators
Lee, Jong-Hwan;
  PDF(new window)
Multidrug-resistant super bacterial, fungal, viral, and parasitic infections are major health threaten pathogens. However, to overcome the present healthcare situation, among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly produced via various species in nature. AMPs, small host defense proteins, are in charge of the innate immunity for the protection of multicellular organisms such as fish, amphibian, reptile, plants and animals from infection. The number of AMPs identified per year has increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been listed into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This report classified AMP into several categories including biological source, biological functions, peptide properties, covalent bonding pattern, and 3D structure. AMP functions not only antimicrobial activity but facilitates cell biological activity such as chemotatic activity. In addition, fibroblastic reticular cell (FRC) originated from mouse lymph node stroma induced the expression of AMP in inflammatory condition. AMP induced from FRC contained whey acidic protein (WAP) domain. It suggests that the classification of AMP will be done by protein domain.
Antimicrobial peptide;classification;fibroblastic reticular cell (FRC);protein domain;
 Cited by
Bauer, F., Schweimer, K., Klüver, E., Conejo-Garcia, J. R., Forssmann, W. G., Rösch, P., Adermann, K. and Sticht, H. 2001. Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 12, 2470-2479.

Brown, K. L. and Hancock, R. E. W. 2006. Cationic host defense (anti-microbial) peptides. Curr. Opin. Immunol. 18, 24-30. crossref(new window)

Conibear, A. C., Rosengren, K. J., Harvey, P. J. and Craik, D. J. 2012. Structural characterization of the cyclic cystine ladder motif of θ-defensins. Biochemistry 48, 9718-9726.

Hancock, R. E. W., Brown, K. L. and Mookherjee, N. 2006. Host defence peptides from invertebrates—Emerging antimicrobial strategies. Immunobiology 211, 315-322. crossref(new window)

Hancock, R. E. W. 2004. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156-164.

Hancock, R. E. W. 1997. Peptide antibiotics. Lancet 349, 418- 422. crossref(new window)

Huo, T. I. 2010. The first case of multidrug-resistant NDM-1-harboring Enterobacteriaceae in Taiwan: here comes the superbacteria! J. Chin. Med. Assoc. 73, 557-558. crossref(new window)

Jenssen, H., Hamill, P. and Hancock, R. E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511. crossref(new window)

Karlstetter, M., Walczak, Y., Weigelt, K., Ebert, S., Van den Brulle, J., Schwer, H., Fuchshofer, R. and Langmann, T. 2010. The novel activated microglia/macrophage WAP domain protein, AMWAP, acts as a counter-regulator of proin-flammatory response. J. Immunol. 185, 3379-3390. crossref(new window)

Kolar, S., Baidouri, S., Hanlon, H. and McDermott, A. M. 2013. Protective role of murine β-defensins 3 and 4 and cathelin-related antimicrobial peptide in Fusarium solani keratitis. Infect Immun. 81, 2669-2677. crossref(new window)

Marr, A. K., Gooderham, W. J. and Hancock, R. E. W. 2006. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 6, 468-472. crossref(new window)

Mekori, Y. A., Hershko, A. Y., Frossi, B., Mion. F., and Pucillo, C. E. 2015. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. Eur. J. Pharmacol. pii: S0014-2999(15)00400-004008.

Mookherjee, N. and Hancock, R. E. W. 2007. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci. 64, 922-933. crossref(new window)

Mysliwy, J., Dingley, A. J., Stanisak, M., Jung, S., Lorenzen, I., Roeder, T., Leippe, M. and Grötzinger, J. 2010. Caenopore-5: the three-dimensional structure of an antimicrobial protein from Caenorhabditis elegans. Dev. Comp. Immunol. 34, 323-330. crossref(new window)

Narayana, J. L. and Chen, J. Y. 2015. Antimicrobial peptides: Possible anti-infective agents. Peptides pii: S0196-9781 (15)00168-00170.

Porcelli, F., Buck, B., Lee, D. K., Hallock, K. J., Ramamoorthy, A. and Veglia, G. 2004. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J. Biol. Chem. 279, 45815-45823. crossref(new window)

Raimondo, D., Andreotti, G., Saint, N., Amodeo, P., Renzone, G., Sanseverino, M., Zocchi, I., Molle, G., Motta, A. and Scaloni, A. 2005. A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proc. Natl. Acad. Sci. USA 102, 6309-6314. crossref(new window)

Rozek, A., Friedrich, C. L. and Hancock, R. E. 2000. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 15765-15774. crossref(new window)

Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T. and Lee, B. J. 2012. Antimicrobial peptides for therapeutic applications: a review. Molecules 17, 12276-12286. crossref(new window)

Wang, G. 2013. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals 6, 728-758. crossref(new window)

Wang, G. 2015. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol. 1268, 43-66. crossref(new window)

Wang, G. 208. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283, 32637-32643.

Wang, G., Li, Y. and Li, X. 2005. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor. J. Biol. Chem. 280, 5803-5811. crossref(new window)

Wei, G., de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W. Y., Lehrer, R. I., and Lu, W. 2009. Through the looking glass, mechanistic insights from enantiomeric human defensins. J. Biol. Chem. 284, 29180-29192. crossref(new window)

Wu, Y. and Smas, C. M. 2008. Wdnm1-like, a new adipokine with a role in MMP-2 activation. Am. J. Physiol. Endocrinol. Metab. 295, E205-E215. crossref(new window)

Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. crossref(new window)