Advanced SearchSearch Tips
An Overview for Molecular Markers in Plants
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 7,  2015, pp.839-848
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.7.839
 Title & Authors
An Overview for Molecular Markers in Plants
Huh, Man Kyu;
  PDF(new window)
A molecular marker is a molecule contained within a sample taken from an organism or other matter. The development of molecular techniques for genetic analysis has led to a great contribution to our knowledge of plant genetics and our understanding of the structure and behavior of various genomes in plants. Recently, functional molecular markers have been developed to detect the presence of major genes from the analysis of pedigreed data in absence of molecular information. DNA markers have developed into many systems based on different polymorphism-detecting techniques or methods such as RFLP, AFLP, RAPD, SSR, SNP, etc. A new class of very useful DNA markers called genic molecular markers utilizing the ever-increasing archives of gene sequence information being accumulated under the EST sequencing projects on a large number of plant species. Functional markers are derived from polymorphic sequences, and are more likely to be involved in phenotypic trait variation. Based on this conceptual framework, the marker systems discussed below are all (gene)-targeted markers, which have the potential to become functional. These markers being part of the cDNA/EST-sequences, are expected to represent the functional component of the genome i.e., gene(s), in contrast to all other random DNA based markers that are developed/generated from the anonymous genomic DNA sequences/domains irrespective of their genic content/information. Especially I sited Poczai et al’ reviews, advances in plant gene-targeted and functional markers. Their reviews may be some useful information to study molecular markers in plants.
DNA markers;functional molecular markers;plants;PCR;Poczai et al.;
 Cited by
Bachem, C. W., van der Hoeven, R. S., de Bruijn, S. M., Vreugdenhil, D., Zabeau, M. and Visser, R. G. 1996. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745-753. crossref(new window)

Bardini, M., Lee, D., Donini, P. and Mariani, A. 2004. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome 291, 281-291.

Bostein, D., White, R. L., Skolnick, M. and Davis, R. W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314-331.

Breviario, D., Baird, W. V., Sangoi, S., Hilu, K., Blumetti, P. and Gianì, S. 2007. Polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol. Breeding 20, 249-259. crossref(new window)

Bryan, G. J., Stephenson, P., Collins, A., Kirby, J., Smith, J. B. and Gale, M. D. 1999. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theor. Appl. Genet. 99, 192-198. crossref(new window)

Cernák, I., Taller, J., Wolf, I., Fehér, E., Babinszky, G., Alföldi, Z., Csanádi, G. and Polgár, Z. 2008. Analysis of the applicability of molecular markers linked to the PVY extreme resistance gene Rysto, and the identification of new markers. Acta Biol. Hun. 59, 195-203. crossref(new window)

Collard, B. C. Y. and Mackill, D. J. 2009a. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol. Biol. Rep. 27, 558-562. crossref(new window)

Collard, B. C. Y. and Mackill, D. J. 2009b. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86-93. crossref(new window)

Desmarais, E., Lanneluc, I. and Lagnel, J. 1998. Direct amplification of length polymorphisms (DALP), or how to get and characterize new genetic markers in many species. Nucleic Acids Res. 26, 1458-1465. crossref(new window)

Galasso, I., Manca, A., Braglia, L., Martinelli, T., Morello, L. and Breviario, D. 2010. h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol. Breeding 28, 635-645.

Gui, Y., Yan, G., Bo, S., Tong, Z., Wang, Y., Xiao, B., Lu, X., Li, Y., Wu, W. and Fan, L. 2011. iSNAP: a small RNA-based molecular marker technique. Plant Breeding 130, 515-520. crossref(new window)

Hamada, H. M., Petrino, M. G. and Kakunaga, T. 1982. A novel repeated element with Z-DNA forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465-6469. crossref(new window)

Hu, J. and Vick, B. B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21, 289-294. crossref(new window)

Huh, M. K., Bang, K. H. and Choi, J. S. 2007. Identification of Atractylodes japonica and A. macrocephala by AFLP and SCAR Markers. Horti. Environ. Biotech. 47, 201-205.

Kalendar, R., Antonius, K., Smýkal, P. and Schulman, A. H. 2010. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet. 121, ㅊ. crossref(new window)

Kalendar, R., Grob, T., Regina, M., Suoniemi, A. and Schulman, A. 1999. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor. Appl. Genet. 98, 704-711. crossref(new window)

Kantety, R. V., La Rota, M., Matthews, D. E. and Sorrells, M. E. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48, 501-510. crossref(new window)

Leister, D., Ballvora, A., Salamini, F. and Gebhardt, C. 1996. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat. Genet. 14, 421-429. crossref(new window)

Li, G. and Quiros, C. F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455-461. crossref(new window)

McClintock, B. 1950. The origin and behavior of mutable loci in maize. PNAS 36, 344-355. crossref(new window)

Pang, M., Percy, R. G., Hughs, E. and Zhang, J. 2008. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAPRAPD) in cotton. Euphytica 167, 281-291.

Poczai, P., Verga, I., Laos, M., Cseh, A., Bell, N., Valkonen, J. PT. and Hyvonen, J. 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods 9, 6. crossref(new window)

Seibt, K. M., Wenke, T., Wollrab, C., Junghans, H., Muders, K., Dehmer, K. J., Diekmann, K. and Schmidt, T. 2012. Development and application of SINE-based markers for genotyping of potato varieties. Theor. Appl. Genet. 125, 185-196. crossref(new window)

Van der Linden, C. G., Wouters, D. C. A. E., Mihalka, V., Kochieva, E. Z., Smulders, M. J. M. and Vosman, B. 2004. Efficient targeting of plant disease resistance loci using NBS profiling. Theor. Appl. Genet. 109, 384-393. crossref(new window)

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van De Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414. crossref(new window)

Wang, Q., Zhang, B. and Lu, Q. 2009. Conserved region amplificationpolymorphism (CoRAP), a novel marker technique for plant genotyping in Salvia miltiorrhiza. Plant Mol. Biol. Rep. 27, 139-143. crossref(new window)

Waugh, R., McLean, K., Flavell, A. J., Pearce, S. R., Kumar, A., Thomas, B. B. and Powell, W. 1997. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol. Gen. Genet. 253, 687-694. crossref(new window)

Weining, S. and Langridge, P. 1991. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theor. Appl. Genet. 82, 209-216.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphism’s amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18, 6531-6535. crossref(new window)

Yamanaka, S., Suzuki, E., Tanaka, M., Takeda, Y., Watanabe, J. A. and Watanabe, K. N. 2003. Assessment of cytochrome P450 sequences offers a useful tool for determining genetic diversity in higher plant species. Theor. Appl. Genet. 108, 1-9. crossref(new window)

Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183. crossref(new window)