JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Quantitative Expression Analysis of Functional Genes in Four Dog Breeds
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 8,  2015, pp.861-869
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.8.861
 Title & Authors
Quantitative Expression Analysis of Functional Genes in Four Dog Breeds
Gim, Jeong-An; Kim, Sang-Hoon; Lee, Hee-Eun; Jeong, Hoim; Nam, Gyu-Hwi; Kim, Min Kyu; Huh, Jae-Won; Choi, Bong-Hwan; Kim, Heui-Soo;
  PDF(new window)
 Abstract
One of the domesticated species; the dog has been selectively bred for various aims by human. The dog has many breeds, which are artificially selected for specific behaviors and morphologies. Dogs contribute their life to human as working dogs for guide, rescue, detection or etc. Working dogs requires good personality, such as gentleness, robustness and patience for performing their special duty. Many studies have concentrated on finding genetic marker for selecting the high-quality working dog. In this study, we confirmed quantitative expression patterns of eight genes (ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 and TBR1; T-Box, Brain, 1) among brains tissues from four dog breeds (Beagle, Sapsaree, Shepherd and Jindo), because these genes were expressed and have functions in brain mostly. Specially, BARX2, SEPT9, SLC10A4, TBR1 and WNT1 genes were highly expressed in Beagle and Jindo, and Sapsaree and German Shepherd were vice versa. The biological significance of total genes was estimated by database for annotation, visualization and integrated discovery (DAVID) to determine a different gene ontology (GO) class. In these analyses, we suppose to these eight genes could provide influential information for brain development, and intelligence of organisms. Taken together, these results could provide clues to discover biomarker related to functional traits in brain, and beneficial for selecting superior working dogs.
 Keywords
Brain tissue;dog breeds;functional genes;gene expression profile;qRT-PCR;
 Language
English
 Cited by
 References
1.
Abe, T., Kanemitu, Y., Nakasone, M., Kawahata, I., Yamakuni, T., Nakajima, A., Suzuki, N., Nishikawa, M., Hishinuma, T. and Tomioka, Y. 2013. SLC10A4 is a protease-activated transporter that transports bile acids. J. Biochem. mvt031.

2.
Bartholomä, A. and Nave, K. A. 1994. NEX-1: a novel brain-specific helix-loop-helix protein with autoregulation and sustained expression in mature cortical neurons. Mech. Dev. 48, 217-228. crossref(new window)

3.
Baxter, K. K., Uittenbogaard, M., Yoon, J. and Chiaramello, A. 2009. The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro. 1, 195-211. crossref(new window)

4.
Berstein, G., Blank, J. L., Jhon, D. Y., Exton, J. H., Rhee, S. G. and Ross, E. M. 1992. Phospholipase C-β1 is a GTPase-activating protein for G q/11, its physiologic regulator. Cell 70, 411-418. crossref(new window)

5.
Biase, D., Barra, D., Simmaco, M., John, R. A. and Bossa, F. 1995. Primary Structure and Tissue Distribution of Human 4 Aminobutyrate Aminotransferase. Eur. J. Biochem. 227, 476-480. crossref(new window)

6.
Bielfelt, S., Redman, H. and McClellan, R. 1971. Sire-and sex-related differences in rates of epileptiform seizures in a purebred beagle dog colony. Am. J. Vet. Res. 32, 2039-2048.

7.
Borges, K. 2013. Slc10A4—what do we know about the function of this “secret ligand carrier” protein? Exp. Neurol. 248, 258-261. crossref(new window)

8.
Bormuth, I., Yan, K., Yonemasu, T., Gummert, M., Zhang, M., Wichert, S., Grishina, O., Pieper, A., Zhang, W., Goebbels, S., Tarabykin, V., Nave, K. A. and Schwab, M. H. 2013. Neuronal basic helix-loop-helix proteins Neurod2/6 regulate cortical commissure formation before midline interactions. J. Neurosci. 33, 641-651. crossref(new window)

9.
Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., Sommer, L., Boussadia, O. and Kemler, R. 2001. Inactivation of the (β)-catenin gene by Wnt1-Cremediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128, 1253-1264.

10.
Bulfone, A., Smiga, S. M., Shimamura, K., Peterson, A., Puelles, L. and Rubenstein, J. L. 1995. T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15, 63-78. crossref(new window)

11.
Caricasole, A., Sala, C., Roncarati, R., Formenti, E. and Terstappen, G. C. 2000. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63-72. crossref(new window)

12.
Chase, K., Jones, P., Martin, A., Ostrander, E. A. and Lark, K. G. 2009. Genetic mapping of fixed phenotypes: disease frequency as a breed characteristic. J. Hered. 100, S37-S41. crossref(new window)

13.
Chen, B. Y., Wang, X., Wang, Z. Y., Wang, Y. Z., Chen, L. W. and Luo, Z. J. 2013. Brain derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β catenin signaling pathway. J. Neurosci. Res. 91, 30-41.

14.
Cho, G. 2005. Microsatellite polymorphism and genetic relationship in dog breeds in Korea. Asian Australas. J. Anim. Sci. 18, 1071-1074. crossref(new window)

15.
da Silva, T. C., Polli, J. E. and Swaan, P. W. 2013. The solute carrier family 10 (SLC10): beyond bile acid transport. Mol. Aspects Med. 34, 252-269. crossref(new window)

16.
Dennis Jr, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and Lempicki, R. A. 2003. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4, P3. crossref(new window)

17.
Dingemanse, N. J., Kazem, A. J., Réale, D. and Wright, J. 2010. Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81-89. crossref(new window)

18.
Fortress, A. M., Schram, S. L., Tuscher, J. J. and Frick, K. M. 2013. Canonical Wnt signaling is necessary for object recognition memory consolidation. J. Neurosci. 33, 12619-12626. crossref(new window)

19.
Geier, E. G., Chen, E. C., Webb, A., Papp, A. C., Yee, S. W., Sadee, W. and Giacomini, K. M. 2013. Profiling Solute Carrier Transporters in the Human Blood–Brain Barrier. Clin. Pharmacol. Ther. 94, 636-639. crossref(new window)

20.
Hall, P. A., Jung, K., Hillan, K. J. and Russell, S. 2005. Expression profiling the human septin gene family. J. Pathol. 206, 269-278. crossref(new window)

21.
Han, J. Y., Shin, E. S., Lee, Y., Ghang, H., Kim, S., Hwang, J., Kim, J. and Lee, J. 2013. A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer. Pharmacogenomics J. 13, 417-422. crossref(new window)

22.
Hevner, R. F., Miyashita-Lin, E. and Rubenstein, J. L. 2002. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other. J. Comp. Neurol. 447, 8-17 crossref(new window)

23.
Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S., Bulfone, A., Goffinet, A. M., Campagnoni, A. T. and Rubenstein, J. L. 2001. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353-366. crossref(new window)

24.
Jirholt, J., Asling, B., Hammond, P., Davidson, G., Knutsson, M., Walentinsson, A., Jensen, J. M., Lehmann, A., Agreus, L. and Lagerstrom-Fermer, M. 2011. 4-aminobutyrate aminotransferase (ABAT): genetic and pharmacological evidence for an involvement in gastro esophageal reflux disease. PLoS One 6, e19095. crossref(new window)

25.
Jones, P. L. 2003. Homeobox genes in pulmonary vascular development and disease. Trends Cardiovasc. Med. 13, 336-345. crossref(new window)

26.
Jung, M., Lippert, B., Metcalf, B., Böhlen, P. and Schechter, P. 1977. γ-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: Effects on brain GABA metabolism in mice. J. Neurochem. 29, 797-802. crossref(new window)

27.
Kay, J. N., Voinescu, P. E., Chu, M. W. and Sanes, J. R. 2011. Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nat. Neurosci. 14, 965-972. crossref(new window)

28.
Kim, K., Tanabe, Y., Park, C. and Ha, J. 2001. Genetic variability in East Asian dogs using microsatellite loci analysis. J. Hered. 92, 398-403. crossref(new window)

29.
Kreuziger, L. M. B., Porcher, J. C., Ketterling, R. P. and Steensma, D. P. 2007. An MLL-SEPT9 fusion and t (11; 17)(q23; q25) associated with de novo myelodysplastic syndrome. Leuk. Res. 31, 1145-1148. crossref(new window)

30.
Kuhlenbäumer, G., Hannibal, M. C., Nelis, E., Schirmacher, A., Verpoorten, N., Meuleman, J., Watts, G. D., De Vriendt, E., Young, P. and Stögbauer, F. 2005. Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat. Genet. 37, 1044-1046. crossref(new window)

31.
Lancaster, M. A., Gopal, D. J., Kim, J., Saleem, S. N., Silhavy, J. L., Louie, C. M., Thacker, B. E., Williams, Y., Zaki, M. S. and Gleeson, J. G. 2011. Defective Wnt-dependent cerebellar midline fusion in a mouse model of Joubert syndrome. Nat. Med. 17, 726-731. crossref(new window)

32.
Louie, C. M. and Gleeson, J. G. 2005. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet. 14, R235-R242. crossref(new window)

33.
Meech, R., Edelman, D. B., Jones, F. S. and Makarenkova, H. P. 2005. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development. Development 132, 2135-2146. crossref(new window)

34.
Nagata, K. I., Asano, T., Nozawa, Y. and Inagaki, M. 2004. Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J. Biol. Chem. 279, 55895-55904. crossref(new window)

35.
Osei, Y. D. and Churchich, J. E. 1995. Screening and sequence determination of a cDNA encoding the human brain 4-aminobutyrate aminotransferase. Gene 155, 185-187. crossref(new window)

36.
Parker, H. G., Kim, L. V., Sutter, N. B., Carlson, S., Lorentzen, T. D., Malek, T. B., Johnson, G. S., DeFrance, H. B., Ostrander, E. A. and Kruglyak, L. 2004. Genetic structure of the purebred domestic dog. Science 304, 1160-1164. crossref(new window)

37.
Peruzzi, D., Aluigi, M., Manzoli, L., Billi, A. M., Di Giorgio, F. P., Morleo, M., Martelli, A. M. and Cocco, L. 2002. Molecular characterization of the human PLC beta1 gene. Biochim. Biophys. Acta 1584, 46-54. crossref(new window)

38.
Rask-Andersen, M., Masuram, S., Fredriksson, R. and Schiöth, H. B. 2013. Solute carriers as drug targets: current use, clinical trials and prospective. Mol. Aspects Med. 34, 702-710. crossref(new window)

39.
Ruefenacht, S., Gebhardt-Henrich, S., Miyake, T. and Gaillard, C. 2002. A behaviour test on German Shepherd dogs: heritability of seven different traits. Appl. Anim. Behav. Sci. 79, 113-132. crossref(new window)

40.
Sakisaka, T. and Takai, Y. 2005. Cell adhesion molecules in the CNS. J. Cell Sci. 118, 5407-5410. crossref(new window)

41.
Sander, G., Bawden, C. S., Hynd, P. I., Nesci, A., Rogers, G. and Powell, B. C. 2000. Expression of the homeobox gene, Barx2, in wool follicle development. J. Invest. Dermatol. 115, 753-756. crossref(new window)

42.
Stamps, J. and Groothuis, T. G. 2010. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. 85, 301-325 crossref(new window)

43.
Storlazzi, C., Brekke, H., Mandahl, N., Brosjö, O., Smeland, S., Lothe, R. and Mertens, F. 2006. Identification of a novel amplicon at distal 17q containing the BIRC5/SURVIVIN gene in malignant peripheral nerve sheath tumours. J. Pathol. 209, 492-500. crossref(new window)

44.
Supek, F., Bošnjak, M., Škunca, N. and Šmuc, T. 2011. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, e21800. crossref(new window)

45.
Svartberg, K. 2006. Breed-typical behaviour in dogs—Historical remnants or recent constructs? Appl. Anim. Behav. Sci. 96, 293-313. crossref(new window)

46.
Toth, A. L., Varala, K., Newman, T. C., Miguez, F. E., Hutchison, S. K., Willoughby, D. A., Simons, J. F., Egholm, M., Hunt, J. H. and Hudson, M. E. 2007. Wasp gene expression supports an evolutionary link between maternal behavior and eusociality. Science 318, 441-444. crossref(new window)

47.
Vaysse, A., Ratnakumar, A., Derrien, T., Axelsson, E., Rosengren Pielberg, G., Sigurdsson, S., Fall, T., Seppala, E. H., Hansen, M. and Lawley, C. T. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 7, e1002316. crossref(new window)

48.
Vila, C., Savolainen, P., Maldonado, J. E., Amorim, I. R., Rice, J. E., Honeycutt, R. L., Crandall, K. A., Lundeberg, J. and Wayne, R. K. 1997. Multiple and ancient origins of the domestic dog. Science 276, 1687-1689. crossref(new window)

49.
Wayne, R. K., Geffen, E., Girman, D. J., Koepfli, K. P., Lau, L. M. and Marshall, C. R. 1997. Molecular systematics of the Canidae. Syst. Biol. 46, 622-653. crossref(new window)

50.
Wayne, R. K. and Ostrander, E. A. 1999. Origin, genetic diversity, and genome structure of the domestic dog. Bioessays 21, 247-257. crossref(new window)

51.
Yoon, B. E., Woo, J. and Lee, C. J. 2012. Astrocytes as GABA-ergic and GABA-ceptive cells. Neurochem. Res. 37, 2474-2479. crossref(new window)