Advanced SearchSearch Tips
The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 8,  2015, pp.880-888
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.8.880
 Title & Authors
The Effects of the Fruits of Foeniculum vulgare on Skin Barrier Function and Hyaluronic Acid Production in HaCaT Keratinocytes
Yu, Hak Yin; Yang, In Jun; Lincha, V.R; Park, In Sik; Lee, Dong-Ung; Shin, Heung Mook;
  PDF(new window)
Foeniculum vulgare (FV) has long been used in traditional medicine for the treatment of inflammatory diseases. In addition, it is usually known as an important medicinal and aromatic plant widely used as a carminative, digestive, lactogogue, and diuretic, and for treating respiratory and gastrointestinal disorders. The skin barrier protects against the invasion of pathogens, fends off chemical and physical assaults, and protects against extensive water loss. In this study, the effects of solvent-fractionated FV fruits on strengthening the skin barrier and maintaining moisture, as well as their antifungal activity, were investigated in human keratinocyte (HaCaT) cells. The expression of involucrin, loricrin, filaggrin, hyaluronic acid synthase, human β defensin, and cathelicidin genes and proteins was measured by reverse transcription polymerase chain reaction (RT-PCR) and western blotting. The production of hyaluronic acid was determined by enzyme-linked immunosorbent assay (ELISA). The butanol fraction increased the expression of involucrin and filaggrin. Both the ethyl acetate and the butanol fractions increased hyaluronic acid production by promoting the expression of hyaluronic acid synthase-1. Although the antimicrobial peptides were increased by FV crude extract and its fractions, the samples did not show a significant effect compared to the normal group. These results suggest that the butanol fraction of FV could be very useful in cosmetics for the treatment of dermatological diseases.
Cornified envelopment peptide;Foeniculum vulgare;HaCaT cell;hyaluronic acid;skin barrier function;
 Cited by
스테비올 및 그 유도체의 세포연접 관련 클라우딘 8 발현 조절을 통한 세포이동 저해효과,최선경;조남준;조욱민;심중현;김기광;황형서;

대한화장품학회지, 2016. vol.42. 4, pp.403-412 crossref(new window)
Effect of Skin Lipid Barrier Formation on Hataedock Treatment with Douchi, Journal of Korean Medicine, 2017, 38, 2, 41  crossref(new windwow)
Inhibitory Effect of Steviol and Its Derivatives on Cell Migration via Regulation of Tight Junction-related Protein Claudin 8, Journal of the Society of Cosmetic Scientists of Korea, 2016, 42, 4, 403  crossref(new windwow)
Alis, R. S., Falconer, A., Ikram, M., Bissett, C. E., Cerio, R. and Quinn, A. G. 2001. Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J. Invest. Dermatol. 117, 106-111. crossref(new window)

Anitha, T., Balakumar, C., Ilango, K. B., Benedict Jose, C. and Vetrivel, D. 2014. Antidiabetic activity of the aqueous extracts of Foeniculum vulgare on streptozotocin-induced diabetic rats. IJAPBC 3, 487-494.

Bals, R. 2000. Epithelial antimicrobial peptides in host defense against infection. Respir. Res. 1, 141-150. crossref(new window)

Braff, M. H., Bardan, A., Nizet, V. and Gallo, R. L. 2005. Cutaneous defense mechanisms by antimicrobial peptides. J. Invest. Dermatol. 125, 9-13. crossref(new window)

Braff, M. H., Di Nardo, A. and Gallo, R. L. 2005. Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J. Invest. Dermatol. 124, 394-400. crossref(new window)

Brown, M. B. and Jones, S. A. 2005. Hyaluronic acid: a unique topical vehicle for the localized delivery of drugs to the skin. J. Eur. Acad. Dermatol. Venereol. 19, 308-318. crossref(new window)

Choi, E. M. and Hwang, J. K. 2004. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 75, 557-565. crossref(new window)

Choi, E. M. and Koo, S. J. 2004. Inhibition of lipopolysaccharide-stimulated inflammatory mediator production in RAW264.7 macrophages by Foeniculum vulgare fruit extract. Kor. J. Food Cookery Sci. 20, 505-510.

Cork, M. J., Danby, S. G., Vasilopoulos, Y., Hadgraft, J., Lane, M. E., Moustafa, M., Guy, R. H., Macqowan, A. L., Tazi-Ahnini, R. and Ward, S. J. 2009. Epidermal barrier dysfunction in atopic dermatitis. J. Invest. Dermatol. 129, 1892-1908. crossref(new window)

Dahiya, P. and Kamal, R. 2013. Hyaluronic acid: a boon in periodontal therapy. N. Am. J. Med. Sci. 5, 309-315 crossref(new window)

Dübe, B., Lüke, H. J., Aumailley, M. and Prehm, P. 2001. Hyaluronan reduces migration and proliferation in CHO cells. Biochim. Biophys. Acta. 1538, 283-289. crossref(new window)

Elias, P. M., Wood, L. C. and Feingold, K. R. 1999. Epidermal pathogenesis of inflammatory dermatoses. Am. J. Contact. Dermat. 10, 119-126.

Forslin, B. 1994. A domain mosaic model of the skin barrier. Acta. Derrn. Venereol. 74, 1-6.

Fuchs, E. 1993. Epidermal differntiation and keratin gene expression. J. Cell Sci. 17, 197-208.

Gallo, R. L. and Huttner, K. M. 1998. Antimicrobial peptides: an emerging concept in cutaneous biology. J. Invest. Dermatol. 111, 739-743. crossref(new window)

Gallo, R. L., Murakami, M., Ohtake, T. and Zaiou, M. 2002. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110, 823-831. crossref(new window)

Ganz, T. 1999. Defensins and host defense. Science 286, 420-421. crossref(new window)

Ghersetich, I., Notti, T., Gampainle, G., Grappone, C. and Dini, G. 1994. Hyalurinic acid in cutaneous intrinsic aging. Int. J. Dermatol. 33, 119-122. crossref(new window)

Harding, C. R., Watkinson, A., Rawlings, A. V. and Scott, I. R. 2000. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 22, 21-52. crossref(new window)

Hwang, S. P., Choi, U. H. and An, S. G. 2009. Skin barrier and antimicrobial activity. J. Skin Barrier Res. 11, 55-63.

Howell, M. D., Kim, B. E., Gao, P., Grant, A. V., Boguniewicz, M., Debenedetto, A., Schneider, L., Beck, L. A., Barnes, K. C. and Leung, D. Y. 2007. Cytokine modulation of atopic dermatitis filaggrin skin expression. J. Allergy Clin. Immunol. 120, 150-155. crossref(new window)

Hata, T. R. and Gallo, R. L. 2008. Antimicrobial peptides, skin infections and atopic dermatitis. Semin. Cutan. Med. Surg. 27, 144-150. crossref(new window)

Hwang, H. Y., Choi, Y. S., Jung, B. H., Lim, B. W. and Kim, J. D. 2007. Effect of Foeniculum vulgare Gaertner extracts on blood pressure in spontaneously hypertensive rats. Proceedings of the Convention of the Korean Society of Applied Pharmacology. 161-162

Ishida-Yamamoto, A., Kartasova, T., Matsuo, S., Kuroki, T. and Izuka, H. 1997. Involucrin and SPRR are synthasized sequentially in differentiating cultured epidermal cells. J. Invest. Dermatol. 108, 12-16. crossref(new window)

Izadpahah, A. and Gallo, R. L. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52, 381-390. crossref(new window)

Karvinen, S., Pasonen-Seppänen, S., Hyttinen, J. M., Pienimäki, J. P., Törrönen, K., Jokela, T. A., Tammi, M. I. and Tammi, R. 2003. Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3. J. Biol. Chem. 278, 49495-49504. crossref(new window)

Kim, H. J., Shin, J. U. and Lee, K. H. 2013. Atopic dermatitis and skin barrier dysfunction. Allergy Asthma Respir. Dis. 1, 20-28. crossref(new window)

Kim, S. M., Choi, C. H., Kim, J. W., Won, S. R. and Rhee, H. I. 2008. The anticaries activity of hot water extracts from Foeniculum vulgare. J. Kor. Soc. Appl. Biol. Chem. 51, 84-87

Lee, J. C., Lee, E., Lee, Y. C., Oh, H., Yoon, H. S., Ha, T. K. and Hong, E. H. 2007. Effects of Fructus foeniculi extract on recovering liver function. Kor. J. Herbology. 22, 213-218

Lee, J. J., Choe, M. S., Chung, C. S. and Choe, B. 2003. Effect of food restriction on rat adipotise lipoprotein lipase activity and lipogenesis. Kor. J. Exercise Nutr. 7, 135-141

Longas,M. O., Russell, C. S. and He, X. Y. 1987. Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydr. Res. 159, 127-136. crossref(new window)

Malaisse, J., Bourguignon, V., De Vuyst, E., Lambert de Rouvroit C., Nikkels, A. F., Flamion, B. and Poumay, Y. 2014. Hyaluronan metabolism in human keratinocytes and atopic dermatitis skin is driven by a balance of hyaluronan synthases 1 and 3. J. Invest. Dermatol. 134, 2174-2182. crossref(new window)

Mohsenzadeh, M. 2007. Evaluation of antibacterial activity of selected Iranian essential oils against Staphylococcus aureus and Escherichia coli in nutrient broth medium. Pak. J. Biol. Sci. 10, 3693–3697. crossref(new window)

Nemes, Z. and Steinert, P. M. 1999. Brick and mortar of the epidermal barrier. Exp. Mol. Med. 31, 5-19. crossref(new window)

Oktay, M., Gülcin, I. and Küfrevioğlu, Ö. İ. 2003. Determination of in vitro antioxidant activity of funnel (Foeniculum vulgare) seed extracts. LWT-Food Sci. Technol. 36, 263-271. crossref(new window)

Ong, P. Y., Ohtake, T., Brandt, C., Strickland, I., Boguniewicz, M., Ganz, T., Gallo, R. and Leung, D. Y. 2002. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J .Med. 347, 1151-1160. crossref(new window)

Pienimäki, J. P., Rilla, K., Fülöp, C., Sironen, R. K., Karvinen, S., Pasonen, S., Lammi, M. J., Tammi, R., Hascall V. C. and Tammi, M. I. 2001. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan. J. Biol. Chem. 276, 20428-20435. crossref(new window)

Rasul, A., Akhtar, N., Khan, B. A., Mahmood, T., Uz Zaman, S. and Khan, H. M. 2012. Formulation development of a cream containing fennel extract: in vivo evaluation for anti-aging effects. Pharmazie 67, 54-58.

Reinholz, M., Ruzicka, T. and Schauber, J. 2012. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann. Dermatol. 24, 126-135. crossref(new window)

Ruberto, G., Baratta, M. T., Deans, S. J. and Dorman, H. J. 2000. Antioxidant and antimicrobial activity of Foeniculum vulgare and Crithmum maritimum essential oils. Planta. Med. 66, 687-693. crossref(new window)

Sakai, S., Sayo, T., Kodama, S. and Inoue, S. 1999. NMethyl-L-serine stimulates hyaluronan production in human skin fibroblasts. Skin Pharmacol. Appl. Skin Physiol. 12, 276-283. crossref(new window)

Schroder, J. M. and Harder, J. 2006. Antimicrobial skin peptides and proteins. Cell. Mol. Life Sci. 63, 469-486. crossref(new window)

Seo, D. J., Kim, T. H., Kim, H. S. and Choe, M. 2011. Effects of Foeniculi fructus water extracts on activities of key enzymes of lipid metabolism related with obesity. Kor. J. Plant Res. 24, 181-188 crossref(new window)

Shin, M. G. 2000. Clinical traditional herbalogy, pp. 305-306, Young-lim Publishing, Seoul, Korea.

Singh, G., Maurya, S., De Lampasona, M. P. and Catalan, C. 2006. Chemical constituents, antifungal and antioxidative potential of Foeniculum vulgare volatile oil and its acetone extract. Food Control 17, 745-752. crossref(new window)

Smith, F. J., Irvine, A. D., Terron-Kwiatkowski, A., Sandilands, A., Campbell, L. E., Zhao, Y., Liao, H., Evans, A. T., Goudie, D. R., Lewis-Jones, S., Arseculeratne, G., Munro, C. S., Sergeant, A., O’Regan, G., Bale, S. J., Compton, J. G., DiGiovanna, J. J., Presland, R. B., Fleckman, P. and McLean, W. H. 2006. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. 38, 337-342. crossref(new window)

Song, H. J., Jin, M. H. and Lee, S. H. 2013. Effect of ferulic acid isolated from Cnidium officinale on the synthesis of hyaluronic acid. J. Soc. Cosmet. Scientists Kor. 39, 281-288. crossref(new window)

Steinert, P. M. 1995. A model for the hierarchical structure of the human epidermal cornified cell envelope. Cell Death Differ. 2, 33-40.

Steinert, P. M. and Marekov, L. N. 1995. The poteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J. Biol. Chem. 270, 17702-17711. crossref(new window)

Steven, A. C. and Steiner, P. M. 1994. Protein composition of cornified cell envelopes of epidermal keratinocyte. J. Cell Sci. 107, 693-700.

Taïieb, A. 1999. Hypothesis: from epidermal barrier dysfunction to atopic disorders. Contact. Dermatitis. 41, 177-180. crossref(new window)

Thyssen, J. P., Ross-Hansen, K., Johansen, J. D., Zachariae, C., Carlsen, B. C., Linneberg, A., Bisqaard, H., Carson, C. G., Nielsen, N. H., Meldqaard, M., Szecsi, P. B., Stender, S. and Menné, T. 2012. Filaggrin loss-of-function mutation R501X and 2282del4 carrier status is associated with fissured skin on the hands: results from a cross-sectional population study. Br. J. Dermatol. 166, 46-53. crossref(new window)

Yamasaki, K. and Gallo, R. L. 2008. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 18, 11-21.