Advanced SearchSearch Tips
Optogenetics: a New Frontier for Cell Physiology Study
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 8,  2015, pp.953-959
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.8.953
 Title & Authors
Optogenetics: a New Frontier for Cell Physiology Study
Byun, Jonghoe;
  PDF(new window)
Optogenetics is the combination of optical and molecular strategies to control designated molecular and cellular activities in living tissues and cells using genetically encoded light-sensitive proteins. It involves the use of light to rapidly gate the membrane channels that allows for ion movement. Optogenetics began with the placing of light-sensitive proteins from green algae inside specific types of brain cells. The cells can then be turned on or off with pulses of blue and yellow light. Using the naturally occurring algal protein Channelrhodopsin-2 (ChR2), a rapidly gated light-sensitive cation channel, the number and frequency of action potentials can be controlled. The ChR2 provides a way to manipulate a single type of neuron while affecting no others, an unprecedented specificity. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers. An improbable combination of green algae, lasers, gene therapy and fiber optics made it possible to map neural circuits deep inside the brain with a precision that has never been possible before. This will help identify the causes of disorders like depression, anxiety, schizophrenia, addiction, sleep disorder, and autism. Optogenetics could improve upon existing implanted devices that are used to treat Parkinson’s disease, obsessive-compulsive disorder and other ailments with pulses of electricity. An optogenetics device could hit more specific subsets of brain cells than those devices can. Applications of optogenetic tools in nonneuronal cells are on the rise.
 Cited by
Adamantidis, A. R., Zhang, F., de Lecea, L. and Deisseroth, K. 2014. Optogenetics: opsins and optical interfaces in neuroscience. Cold Spring Harb Protoc. 8, 815-822.

Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. and Deisseroth, K. 2009. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025-1029. crossref(new window)

Arenkiel, B. R., Peca, J., Davison, I. G., Feliciano, C., Deisseroth, K., Augustine, G. J., Ehlers, M. D. and Feng, G. 2007. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205-218. crossref(new window)

Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. and Deisseroth, K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci . 8, 1263-1268. crossref(new window)

Boyden, E. S. 2011. A history of optogenetics: the development of tools for controlling brain circuits with light. F1000 Biol. Rep. 3, 11.

Chow, B. Y., Han, X., Dobry, A. S., Qian, X., Chuong, A. S., Li, M., Henninger, M. A., Belfort, G. M., Lin, Y., Monahan, P. E. and Boyden, E. S. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98-102. crossref(new window)

Chung, K. and Deisseroth, K. 2013. CLARITY for mapping the nervous system. Nat. Methods . 10, 508-513. crossref(new window)

Ciocchi, S., Herry, C., Grenier, F., Wolff, S. B., Letzkus, J. J., Vlachos, I., Ehrlich, I., Sprengel, R., Deisseroth, K., Stadler, M. B., Müller, C. and Lüthi, A. 2010. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277-282. crossref(new window)

Doroudchi, M. M., Greenberg, K. P., Liu, J., Silka, K. A., Boyden, E. S., Lockridge, J. A., Arman, A. C., Janani, R., Boye, S. E., Boye, S. L., Gordon, G. M., Matteo, B. C., Sampath, A. P., Hauswirth, W. W. and Horsager, A. 2011. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19, 1220-1229. crossref(new window)

Feng, L., Kwon, O., Lee, B., Oh, W. C. and Kim, J. 2014. Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nat. Protoc . 9, 2425-2437. crossref(new window)

G, N., Tan, A., Farhatnia, Y., Rajadas, J., Hamblin, M. R., Khaw, P. T. and Seifalian, A. M. 2013. Channelrhodopsins: visual regeneration and neural activation by a light switch. Nat. Biotechnol . 30, 461-474.

Han, X. and Boyden, E. S. 2007. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299. crossref(new window)

Han, X., Qian, X., Bernstein, J. G., Zhou, H. H., Franzesi, G. T., Stern, P., Bronson, R. T., Graybiel, A. M., Desimone, R. and Boyden, E. S. 2009. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191-198. crossref(new window)

Hegemann, P. and Nagel, G. 2013. From channelrhodopsins to optogenetics. EMBO Mol. Med . 5, 173-176. crossref(new window)

Lee, H., Choi, M. K., Lee, D., Kim, H. S., Hwang, H., Kim, H., Park, S., Paik, Y. K. and Lee, J. 2011. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat. Neurosci . 15, 107-112. crossref(new window)

Lima, S. Q. and Miesenbock, G. 2005. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141-152. crossref(new window)

Nagel, G., Brauner, M., Liewald, J. F., Adeishvili, N., Bamberg, E. and Gottschalk, A. 2005. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol . 15, 2279-2284. crossref(new window)

Nagel, G., Ollig. D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E. and Hegemann, P. 2002. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395-2398. crossref(new window)

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P. and Bamberg, E. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940-13945. crossref(new window)

Nirenberg, S. and Pandarinath, C. 2012. Retinal prosthetic strategy with the capacity to restore normal vision. Proc. Natl. Acad. Sci. USA 109, 15012-15017. crossref(new window)

Nussinovitch, U. and Gepstein, L. 2015. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol . 33, 750-754. crossref(new window)

Okuno, D., Asaumi, M. and Muneyuki, E. 1999. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry 38, 5422-5429. crossref(new window)

Pastrana, E. 2011. Optogenetics: controlling cell function with light. Nat. Methods 8, 24-25 crossref(new window)

Piao, H. H., Rajakumar, D., Kang, B. E., Kim, E. H. and Baker, B. J. 2015. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescentsensor of membrane potential. J. Neurosci . 35, 372-385. crossref(new window)

Pudasaini, A., El-Arab, K. K. and Zoltowski, B. D. 2015. LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front. Mol. Biosci. 2, 18.

Sineshchekov, O. A., Jung, K. H. and Spudich, J. L. 2002. Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 99, 8689-8694. crossref(new window)

Steinbeck, J. A., Choi, S. J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., Mosharov, E. V. and Studer, L. 2015. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model.Nat. Biotechnol. 33, 204-209. crossref(new window)

Stirman, J. N., Crane, M. M., Husson, S. J., Wabnig, S., Schultheis, C., Gottschalk, A. and Lu, H. 2011. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat. Methods. 8, 153-158. crossref(new window)

Wang, H., Peca, J., Matsuzaki, M., Matsuzaki, K., Noguchi, J., Qiu, L., Wang, D., Zhang, F., Boyden, E., Deisseroth, K., Kasai, H., Hall, W. C., Feng, G. and Augustine, G. J. 2007. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl. Acad. Sci. USA 104, 8143-8148. crossref(new window)

Ye, H., Daoud-El Baba, M., Peng, R. W. and Fussenegger, M. 2011. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565-1568. crossref(new window)

Yoon, H. H., Park, J. H., Kim, Y. H., Min, J., Hwang, E., Lee, C. J., Suh, J. K., Hwang, O. and Jeon, S. R. 2014. Optogenetic inactivation of the subthalamic nucleus improves forelimb akinesia in a rat model of Parkinson disease. Neurosurgery 74, 533-540. crossref(new window)

Zemelman, B. V., Lee, G. A., Ng, M. and Miesenböck, G. 2002. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15-22. crossref(new window)

Zhang, F., Wang, L. P., Brauner, M., Liewald, J. F., Kay, K., Watzke, N., Wood, P. G., Bamberg, E., Nagel, G., Gottschalk, A. and Deisseroth, K. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633-639. crossref(new window)