JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 25, Issue 9,  2015, pp.1043-1050
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2015.25.9.1043
 Title & Authors
NMDA (n-methyl-d-aspartate) Change Expression Level of Transcription Factors (Egr-1, c-jun, Junb, Fosb) mRNA in the Cerebellum Tissue of Balb/c Mouse
Ha, Jong-Su; Kim, Jae-Wha; Song, Jae-Chan;
  PDF(new window)
 Abstract
Glutamate is one of the principle transmitters in the CNS. Ionotropic receptors of glutamate, selectively activated by N-methyl-D-aspartate (NMDA), play an important role in the processes of cell development, learning, memory, and etc. On the other hand, many studies discovered that over-activation of glutamate receptors leads to neurodegeneration and are known to be implicated in major areas of brain pathology. Any sustained effect of a transient NMDA receptor activation is likely to involve signaling to the nucleus and to trigger coordinated changes in gene expression. Classically, a set of immediate-early genes are induced first; some of genes are by themselves transcription factors that control expression of other target genes. This study provides understanding of changes of inducible transcription factors mRNA levels with RT-PCR by inducing over-activation of NMDA receptor with intraperitoneal NMDA injection. The experimental conditions were varied by 1, 5, 25, and 125 g/ of body weight NMDA and measured transcription factors mRNA levels are Egr-1, c-Jun, JunB, and FosB. Based on result obtained, inducible transcription factors mRNA in NMDA injection to mice with 5 g/body weight showed the greatest change. And ITF mRNA showed greatest change 24 hr after injection. The expression level of JunB mRNA was markedly changed. Up to the present days, no study clearly understood how ITF mRNA affected the apoptosis of purkinje cells in the cerebellum. The current study improves the understanding of the mechanism of apoptosis of purkinje cells in the cerebellum.
 Keywords
Inducible transcription factors;mRNA level;neurodegeneration;NMDA;over-activation;
 Language
Korean
 Cited by
 References
1.
An derson, A. J., Su, J. H. and Cotman, C. W. 1996. DNA damage and apoptosis in Alzheimer’s disease:colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem. J. Neurosci. 16, 1710-1719.

2.
Bazhenov, A. V. and Kleshchevnikov, A. M. 1999. Reciprocal inhibition of the AMPA and NMDA components of excitatory postsynaptic potentials in field CA1 of the rat hippocampus in vitro. Neurosci. Behav. Physiol. 29, 719-725. crossref(new window)

3.
Carulli, D., Buffo, A., Botta, C., Altruda, F. and Strata, P. 2002. Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun. Eur. J. Neurosci. 16, 105-118. crossref(new window)

4.
Catania, M. V., Copani, A., Calogero, A., Ragonese, G. I., Condorelli, D. and Nicoletti, F. 1999. An enhanced expression of the immediate early gene, Egr-1, is associated with neuronal apoptosis in culture. Neuroscience 91, 1529-1538. crossref(new window)

5.
Cheyou, E. R., Youreva, V. and Srivastava, A. K. 2014. Involvement of the early growth response protein 1 in vascular pathophysiology: an overview. Indian J. Biochem. Biophys. 51, 457-66

6.
Gillardon, F., Baurle, J., Wickert, H., Grusser-Cornehls, U. and Zimmermann, M. 1995. Differential regulation of bcl-2, bax, c-fos, junB, and krox-24 expression in the cerebellum of Purkinje cell degeneration mutant mice. J. Neurosci. Res. 41, 708-715. crossref(new window)

7.
Hashimoto, M. and Hibi, M. 2012. Development and evolution of cerebellar neural circuits. Dev. Growth Differ. 54, 373-389. crossref(new window)

8.
Hirai, H., Kirsch, J., Laube, B., Betz, H. and Kuhse, J. 1996. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identfication of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc. Natl. Acad. Sci. USA 93, 6031-6036. crossref(new window)

9.
Hou, Y. N., Cebers, G., Terenius, L. and Liljequist, S. 1997. Characterization of NMDA- and AMPA-induced enhancement of AP-1 DNA binding activity in rat cerebellar granule cells. Brain Res. 754, 79-87. crossref(new window)

10.
Hume, R. I., Digledine, R. and Heinemann, S. F. 1991. Identification of a site in glutamate receptor subunits that controls calcium permeability. Sciences 253, 1028-1031. crossref(new window)

11.
Ishizaki, Y. 2006. Control of proliferation and differentiation of neural precursor cells: focusing on the developing cerebellum. J. Pharmacol. Sci. 101, 183-188. crossref(new window)

12.
Järlestedt, K., Rousset, C. I., Ståhlberg, A., Sourkova, H., Atkins, A. L., Thornton, C., Barnum, S. R., Wetsel, R. A., Dragunow, M., Pekny, M., Mallard, C., Hagberg, H. and Pekna, M. 2013. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury. FASEB J. 27, 3797-3804. crossref(new window)

13.
Karin, M. 1995. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270, 16483-16486. crossref(new window)

14.
Kleven, G. A., Booth, H. M., Voogd, M. and Ronca, A. E. 2014. L-dopa reverses behavioral deficits in the Pitx3 mouse fetus. Behav. Neurosci. 128, 749-59 crossref(new window)

15.
Lerea, L. S., Butler L. S. and Mcnamara, J. O. 1992. NMDA and non-NMDA receptor-mediated increase of c-fos mRNA in dentate gyrus neurons involves calcium influx via different routes. J. Neurosci. 12, 2973-2981.

16.
Levkovitz, Y. and Baraban, J. M. 2001. A dominant negative inhibitor of the Egr family of transcription regulatory factors suppresses cerebellar granule cell apoptosis by blocking c-Jun activation. J. Neurosci. 21, 5893-5901.

17.
Li, H., Wang, Z. X. and Wu J. W. 2014. Purification, characterization and docking studies of the HIN domain of human myeloid nuclear differentiation antigen (MNDA). Biotechnol. Lett. 36, 899-905. crossref(new window)

18.
Lidwell, K. and Griffiths, R. 2002. Possible role for the FosB/JunD AP-1 transcription factor complex in glutamate-mediated excitotoxicity in cultured cerebellar granule cells. J. Neurosci. Res. 62, 427-439.

19.
Marcus, D. L., Strafaci, J. A, Miller, D. C., Masia, S., Thomas, C. G., Rosman, J., Hussain, S. and Freedman, M. L. 1998. Quantitative neuronal c-fos and c-jun expression in Alzheimer’s disease. Neurobiol. Aging 19, 393-400. crossref(new window)

20.
Mayer, M. L. and Westbrook, G. L. 1987. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog. Neurobiol. 28, 197-206. crossref(new window)

21.
Mayer, M. L., Westbrook, G. L. and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of NMDA Responses in spinal cord neurons. Nature 309, 261-263. crossref(new window)

22.
Mcdonald, J. W. and Johnston, M. V. 1990. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. Brain Res. Rev. 15, 41-70 crossref(new window)

23.
Meldrum, B. S. 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007-1015.

24.
Michisuke, Y., Douglas, F., Lynne, M. V., Shaiu, C. S., Curran, T. and Connor, J. A. 1996. Functional NMDA Receptors are transiently active and support the survival of purkinje cells in culture. J. Neurosci. 16, 4651-4661.

25.
Olney, J. W. 1974. Toxic effects of glutamate and relate amino acids on the developing central nerve system, pp. 501-512. In: Nyhan, W. N. (ed.), Heritable Disorders of Amino Acid Metabolism. New Wiley & Sons.

26.
Olney, J. W., Labruyere, J. and Wang, G. 1991. NMDA antagonist neurotoxicity: mechanism and prevention. Science 254, 1515-1518. crossref(new window)

27.
Pabo, C. O. and Sauer, R. T. 1992. Transcription factors: structural families and principles of DNA recognition. Annu. Rev. Biochem. 61, 1053-1095. crossref(new window)

28.
Platenik, J., Kuramoto, N. and Yoneda, Y. 2000. Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sci. 67, 335-364. crossref(new window)

29.
Strick, P. L. 1985. The cerebellum: the cerebellum and neural control. Science 229, 547-549. crossref(new window)

30.
Szekely, A. M., Costa, E. and Grayson, D. R. 1990. Transcriptional program coordination by N-methyl-D-aspartate-sensitive glutamate receptor stimulation in primary cultures of cerebellar neurons. Mol. Pharmacol. 38, 624-633.

31.
Tönges, L., Planchamp, V., Koch, J. C., Herdegen, T., Bähr, M. and Lingor, P. 2011. JNK isoforms differentially regulate neurite growth and regeneration in dopaminergic neurons in vitro. J. Mol. Neurosci. 45, 284-293. crossref(new window)

32.
Watanabe, M., Moise, I. M. and Inoue, Y. 1996. Modified N-methyl-D-aspartate receptor subunit expression emerges in reeler Purkinje cells after accomplishment of the adult wild-type expression. Neurosci. Res. 26, 335-343. crossref(new window)

33.
Weller, M. 2014. Primary central nervous system lymphoma in the elderly. Oncol. Res. Treat. 37, 376-377 crossref(new window)

34.
Wu, H. Y., Wang, T., Li, L., Correia, K. and Morgan, J. I. 2012. A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. FASEB J. 26, 4468-4480. crossref(new window)

35.
Wyllie, D. J., Livesey, M. R. and Hardingham, G. E. 2013. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology 74, 4-17. crossref(new window)

36.
Yoneda, Y., Ogita, K., Azuma, Y., Ikeda, M., Tagami, H. and Manabe, T. 1999. Predominant expression of nuclear activator protein-1 complex with DNA binding activity following systemic administration of N-methyl-D-aspartate in dentate granule cells of murine hippocampus. Neuroscience 93, 19-31. crossref(new window)

37.
Zheng, S., Yang, H., Chen, Z., Zheng, C., Lei, C. and Lei, B. 2015. Activation of liver X receptor protects inner retinal damage induced by N-methyl-D-aspartate. Invest. Ophthalmol.Vis. Sci. 22, 1168-1180.