Advanced SearchSearch Tips
Exercise and Neuroplasticity: Benefits of High Intensity Interval Exercise
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.129-139
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.129
 Title & Authors
Exercise and Neuroplasticity: Benefits of High Intensity Interval Exercise
Hwang, Ji Sun; Kim, Tae Young; Hwang, Moon-Hyon; Lee, Won Jun;
  PDF(new window)
Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissues, which contributes to improved brain and neural plasticity and cognitive function. Previous findings have been to understand the effect of light or moderate intensity aerobic exercise on neurotrophic factors and cognitive function, not that of high intensity aerobic exercise. However, recent findings suggest that high intensity interval training is a safe, less time-consuming, efficient way to improve cardiorespiratory fitness and weight control, thus American College of Sport Medicine (ACSM)’s guidelines for exercise prescription for various adult populations also recommend the application of high intensity interval training to promote their overall health. High intensity interval training also enhances the expression of BDNF, IGF-1, and VEGF at the brain and peripheral tissues, which improves cognitive function. Increased frequency of intermittent hypoxia and increased usage of lactate as a supplementary metabolic resource at the brain and neural components are considered a putative physiological mechanism by which high intensity interval training improves neurotrophic factors and cognitive function. Therefore, future studies are required to understand how increased hypoxia and lactate usage leads to the improvement of neurotrophic factors and what the related biological mechanisms are. In addition, by comparing with the iso-caloric moderate continuous exercise, the superiority of high intensity interval training on the expression of neurotrophic factors and cognitive function should be demonstrated by associated future studies.
Cognitive function;high-intensity interval exercise;hypoxia;lactate;neurotrofic factors;
 Cited by
Afzalphuor, M. E., Chadorneshin, H. T., Foadoddini, M. and Eivari, H. A. 2015. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 147, 78-83. crossref(new window)

Barbieri, M., Ferrucci, L., Ragno, E., Corsi, A., Bandinelli, S., Bonafe, M., Olivieri, F., Giovagnetti, S., Franceschi, C., Guralnik, J. M. and Paolisso, G. 2003. Chronic Inflammation and the effect of IGF-1 on muscle strength and power in older persons. Am. J. Physiol. Endocrinol. Metab. 284, E481-E487. crossref(new window)

Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P. and Cotman, C. W. 2005. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133, 853-861. crossref(new window)

Bergersen, L. H. 2007. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145, 11-19. crossref(new window)

Borst, S. E., De Hoyos, D. V., Garzarella, L., Vincent, K., Pollock, B. H., Lowenthal, D. T. and Pollock, M. L. 2001. Effects of resistance training on insulin-like growth factor-I and IGF binding proteins. Med. Sci. Sports. Exerc. 33, 648-653.

Breen, E. C., Johnson, E. C., Wagner, H. M., Tseng, M., Sung, L. A., and Wagner, P. D. 1996. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J. Appl. Physiol. 81, 355-361.

Brunelli, A., Dimauro, I., Sgro, P., Emerenziani, G. P., Magi, F., Baldari, C., Guidetti, L., Luigi, L. D., Parisi, P. and Caporossi, D. 2012. Acute exercise modulates BDNF and pro-BDNF protein content in immune cells. Med. Sci. Sports Exerc. 44, 1871-1880. crossref(new window)

Cappon, J., Brasel, J. A., Mohan, S. and Cooper, D. M. 1994. Effect of brief exercise on circulating insulin-like growth factor I. J. Appl. Physiol. 76, 2490-2496. crossref(new window)

Carro, E., Nunez, A., Busiguina, S. and Torres-Aleman, I. 2000. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926-2933.

Cassiman, D., Denef, C., Desmet, V. J. and Roskams, T. 2001. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33, 148-158. crossref(new window)

Cetinkaya, C., Sisman, A. R., Kiray, M., Camsari, U. M., Gencoglu, C., Baykara, B., Aksu, I. and Uysal, N. 2013. Positive effects of aerobic exercise on learning and memory functioning, which correlate with hippocampal IGF-1 increase in adolescent rats. Neurosci. Lett. 549, 177-181. crossref(new window)

Coco, M., Alagona, G., Rapisarda, G., Costanzo, E., Calogero, R. A. and Perciavalle, V. 2010. Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot. Res. 27, 1-8. crossref(new window)

Colcombe, S. and Kramer, A. F. 2003. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125-130. crossref(new window)

Colcombe, S. J., Erickson, K. I., Scalf, P. E., and Kim, J. S., Prakash, R., McAuley, E., Elavsky, S., Marquez, D. X., Hu, L. and Kramer, A. F. 2006. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A. Biol. Sci. Med. Sci. 61, 1166-1170. crossref(new window)

Colier, W. N., Quaresima, V., Oeseburg, B. and Ferrari, M. 1999. Human motor-cortex oxygenation changes induced by cyclic coupled movements of hand and foot. Exp. Brain. Res. 129, 457-461. crossref(new window)

Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trend. Neurosci. 25, 295-301. crossref(new window)

Cotman, C. W., Berchtold, N. C. and Christie, L. A. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472. crossref(new window)

Dery, N., Pilgrim, M., Gibala, M., Gillen, J. and Wojtowicz, J. M. 2013. Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front. Neurosci. 7, 66.

DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. and Bechtel, P. J. 1990. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J. Physiol. 259, E89-E95.

Ding, Q., Vaynman, S., Akhavan, M., Ying, Z. and Gomez-Pinilla, F. 2006. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience 140, 823-833. crossref(new window)

Erickson, K. I. and Kramer, A. F. 2009. Aerobic exercise effects on cognitive and neural plasticity in older adults. Br. J. Sports Med. 43, 22-24.

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., Kim, J. S., Heo, S., Alves, H., White, S. M., Wojcicki, T. R., Mailey, E., Vieira, V. J., Martin, S. A., Pence, B. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2011. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017-3022. crossref(new window)

Ferris, L. T., Williams, J. S. and Shen, C. L. 2007. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 39, 728-734. crossref(new window)

Gavin, T. P. and Wager, P. D. 2001. Effect of short-term exercise training on angiogenic growth factor gene responses in rats. J. Appl. Physiol. 90, 1219-1226.

Greer, B. K., Sirithienthad, P., Moffatt, R. J., Marcello, R. T. and Panton, L. B. 2015. EPOC comparison between isocaloric bouts of steady-state aerobic, intermittent aerobic, and resistance training. Res. Q. Exerc. Sport. 86, 190-195. crossref(new window)

Gregory, S. M., Spiering B. A., Alemany, J. A., Tuckow, A. P., Rarick, K. R., Staab, J. S., Hatfield, D. L., Kraemer, W. J., Maresh, C. M. and Nindl, B. C. 2013. Exercise-induced insulin-like growth factor I system concentrations after training in women. Med. Sci. Sports Exerc. 45, 420-428. crossref(new window)

Griffin, E. W., Mullally, S., Foley, C., Warmington, S. A., O’Mara, S. M. and Kelly, A. M. 2011. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104. 934-941. crossref(new window)

Gustafsson, T., Adrian, P., Lennart, K., Eva, J. and Carl, J. S. 1999. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am. J. Physiol. 276, H679-H685.

Haskell, W. L., Lee, I. M., Rate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., Macera, C. A., Heath, G. W., Thompson, P. D. and Bauman, A. 2007. Physical activity and public health: updated recommendation for adults from American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39, 1423-1434. crossref(new window)

Hofer, M. M. and Barde, Y. A. 1988. Brain-derived neurotrophic factor prevents neuronal death in vivo. Nature 331, 261-262. crossref(new window)

Hoier, B. and Hellsten, Y. 2014. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21, 301-314. crossref(new window)

Hoppeler, H. and Vogt, M. 2001. Hypoxia training for sea-level performance. Training high-living low. Adv. Exp. Med. Biol. 502, 61-73. crossref(new window)

Hotting, K. and Roder, B. 2013. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37, 2243-2257. crossref(new window)

Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C. and Andersen, L. B. 2014. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scand. J. Med. Sci. Sports 24, 1-10.

Ide, K., Horn, A. and Secher, N. H. 1999. Cerebral metabolic response to submaximal exercise. J. Appl. Physiol. 87, 1604-1608.

Juel, C., Klarskov, C., Nielsen, J. J., Krustrup, P., Mohr, M. and Bangsbo, J. 2003. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286, E245-E251. crossref(new window)

Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., Chason, J., Vakil, E., Bardell, L., Boileau, R. A. and Colcombe, A. 1999. Ageing, fitness and neurocognitive function. Nature 400, 418-419. crossref(new window)

Larrebee, M. G. 1995. Lactate metabolism and its effects on glucose metabolism in an exercised neural tissue. J. Neurochem. 64, 1734-1741.

Lezi, E., Burns, J. M. and Swerdlow, R. H. 2014. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol. Aging. 35, 2574-2583. crossref(new window)

Lopez-Lopez, C., LeRoith, D. and Torres-Aleman, I. 2004. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl. Acad. Sci. USA 101, 9833-9838. crossref(new window)

Lou, S. J., Liu, J. Y., Chang, H. and Chen, P. J. 2008. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res. 1210, 48-55. crossref(new window)

Maren, S. K., Sarah, S., Sascha, O., Christian, T., Alexandra, D., Jorn, L. and Jochen, K. 2012. Kinetics of serum brain-derived neurotrophic factor following low-intensity versus high-intensity exercise in men and women. Neuroreport 23, 889-893. crossref(new window)

Monteggia, L. M., Barrot, M., Powell, C. M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R. W. and Nestler, E. J. 2004. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101, 10827-10832. crossref(new window)

Neeper, S. A., Gomez-Pinilla, F., Choi, J. and Cotman, C. 1995. Exercise and brain neurotrophins. Nature 373, 109. crossref(new window)

Pareja-Galeano, H., Brioche, T., Sanchis-Gomar, F., Montal, A., Jovani, C., Martinez-Costa, C., Gomez-Cabrera, M. C. and Vina, J. 2013. Impact of exercise training on neuroplasticity-related growth factors in adolescents. J. Musculoskelet. Neuronal Interact. 13, 368-371.

Paul, D. L., Skyla. M. H., Bradley. J. C. and Timothy, D. N. 2013. Physical activity and the brain: A review of this dynamic, bi-directional relationship. Brain Res. 1539, 95-104. crossref(new window)

Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosnuov, A. A., Hen, R., McKhann, G. M., Sloan, R., Gage, F. H., Brown, T. R. and Small, S. A. 2007. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638-5643. crossref(new window)

Phillips, C., Baktir, M. A., Srivatsan, M. and Salehi, A. 2014. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Fornt. Cell Neurosci. 170, 1-15.

Pilegaard, H., Domino, K., Noland, T., Juel, C., Hellsten, Y., Halestrap, A. P. and Bangsbo, J. 1999. Effect of high-intensity exercise training on lactate/H+ transport capacity in human skeletal muscle. Am. J. Physiol. 276, E255-261.

Poo, M. M. 2001. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24-32. crossref(new window)

Quistorff, B., Secher, N. H. and van Leishout, J. J. 2008. Lactate fuels the human brain during exercise. FASEB J. 22, 3443-3449. crossref(new window)

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K. and Pilegaard, H. 2009. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062-1069. crossref(new window)

Rasmussen, P., Wyss, M. T. and Lundby, C. 2011. Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 25, 2865-2873. crossref(new window)

Ratey, J. J. and Loehr, J. E. 2011. The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. Rev. Neurosci. 22, 171-185.

RojasVega, S., Struder, H. K., Vera Wahrmann, B., Schmidt, A., Bloch, W. and Hollmann, W. 2006. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 1121, 59-65. crossref(new window)

Rooks, C. R., Thom. N. J., McCully, K. K. and Dishman, R. K. 2010. Effects of incremental exercise on cerebral oxygenation measured by near-infared spectroscopy: A systematic review. Prog. Neurobiol. 92, 134-150 crossref(new window)

Ruscheweyh, R., Willemer, C., Kruger, K., Duning, T., Warnecke, T., Sommer, J., Volker K., Ho, H. W., Mooren, F., Knecht, S. and Floel, A. 2011. Physical activity and memory functions: and interventional study. Neurociol. Aging 32, 1304-1319. crossref(new window)

Schiffer, T., Schulte, S., Sperlich, B., Achtzehn, S., Fricke, H. and Struder, H. K. 2011. Lactate infusion at rest increases BDNF blood concentration in humans. Neurosci. Lett. 488, 234-237. crossref(new window)

Schwartz, A. J., Brasel, J. A., Hintz, R. L., Mohan, S. and Cooper, D. M. 1996. Effect of brief low- and high-intensity exercise on circulating insulin-like growth factor (IGF) I, II, and IGF-binding protein-3 and its proteolysis in young healthy men. J. Clin. Endocrinol. Metab. 81, 3492-3497.

Skriver, K., Roig, M., Lundbye-Jensen, J., Pingel, J., Helge, J. W., Kiens, B. and Nielsen, J. B. 2014. Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol. Learn. Mem. 116, 46-58. crossref(new window)

Sonntag, W. E., Ramsey, M. and Carter, C. S. 2005. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 4, 195-212. crossref(new window)

Suzuki, J., Gai, M., Batra, S. and MUsch, T. 1997. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle-aged rats. Acta. Physiol. Scand. 159, 113-121. crossref(new window)

Tang, K., Xia, F. C., Wagner, P. D. and Breen, E. C. 2010. Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir. Physiol. Neurobiol. 170, 16-22. crossref(new window)

Timmons, J. A., Jansson, E., Fischer, H., Gustafsson, T., Greenhaff, P. L., Ridden, J., Rachman, J. and Sundberg, C. J. 2005. Modulation of extracellular matrix genes reflects the magnitude of physiological adaptation to aerobic exercise training in humans. BMC Biol. 3, 19. crossref(new window)

Tonoli, C., Heyman, E., Buyse, L., Roelands, B., Piacentini, M. F., Bailey, S., Pattyn, N., Berthoin, S. and Meeusen, R. 2015. Neurotrophins and cognitive functions in T1D compared with healthy controls: effects of a high intensity exercise. Appl. Physiol. Nutr. Metab. 40, 20-27. crossref(new window)

Trejo, J. L., Carro, E. and Torres-Aleman, I. 2001, Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628-1634.

Tsai, C. L., Wang, C. H., Pan, C. Y., Chen, F. C., Huang, T. H. and Chou, F. Y. 2014. Executive function and endocrinological responses to acute resistance exercise. Front. Behav. Neurosci. 8, 262.

Vayman, S., Ying, Z. and Gomez-Pinilla, F. 2004. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580-2590. crossref(new window)

Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H., Szabo, A., Phillips, S. M., Wojcicki, T. R., Mailey, E. L., Olson, E. A., Gothe, N., Vieira-Potter, V. J., Martin, S. A., Pence, B. C., Cook, M. D., Woods, J. A., McAuley, E. and Kramer, A. F. 2013. Neurobiologycal markers of exercise-related brain plasticity in older adults. Brain Behav. Immun. 28, 90-99. crossref(new window)

Wagner P. D., Olfert, I. M., Tang, K. and Breen, E. C. 2006. Muscle-targeted deletion of VEGF and exercise capacity in mice. Respir. Physiol. Neurobiol. 151, 159-166. crossref(new window)

Wahl, P., Mathes, S., Achtzehn, S., Bloch, W. and Mester, J. 2014. Active vs. passive recovery during high-intensity training influences hormonal response. Int. J. Sport Med. 35, 583-589.

Wahl, P., Zinner, C., Achtzehn, S., Behringer, M., Bloch, W. and Mester, J. 2011. Effects of acid-base balance and high or low intensity exercise on VEGF and bFGF. Eur. J. Appl. Physiol. 111, 1405-1413. crossref(new window)

Wahl, P., Zinner, C., Achtzehn, S., Bloch, W. and Mester, J. 2010. Effect of high- and low-intensity exercise and metabolic acidosis on levels of GH, IGF-I, IGFBP-3 and cortisol. Growth Horm. IGF Res. 5, 380-385.

Wang, H., Ward, N., Boswell, M. and Katz, D. M. 2006. Secretion of brain-derived neurotrophic factor from brain microvascular endothelial cells. Eur. J. Neurosci. 23, 1665-1670. crossref(new window)

Whiteman, A. S., Young, D. E., He, X., Chen, T. C. and Wagenaar, R. C. 2014. Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults. Behav. Brain Res. 259, 302-312. crossref(new window)

Winter, B., Breitenstein, C., Mooren, F. C., Voelker, K., Fobker, M., Lechtermann, A., Krueger, K., Fromme, A., Korsukewitz, C., Floel, A. and Knecht, S. 2007. High impact running improves learning. Neurobiol. Learn Mem. 87, 597-609. crossref(new window)

Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J. and Weber, B. 2011. In vivo evidence for lactate as a neuronal energy source. J. Neurosci. 31, 7477-7485. crossref(new window)

Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningloh, G., Allaman, I. and Magistretti, P. J. 2014. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. 111, 12228-12233. crossref(new window)

Zanconato, S., Moromisato, D. Y., Moromisato, M. Y., Woods, J., Brasel, J. A., Leroith, D., Roberts, C. T. and Cooper, C. M. 1994. Effect of training and growth hormone suppression on insulin-like growth factor I mRNA in young rats. J. Appl. Physiol. 76, 2204-2209.

Zoladz, J. A., Pilic, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J. and Duda, K. 2008. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J. Physiol. Pharmacol. 59, 119-132.