JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Transcriptional Regulation of Genes by Enhancer RNAs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.140-145
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.140
 Title & Authors
Transcriptional Regulation of Genes by Enhancer RNAs
Kim, Yea Woon; Kim, AeRi;
  PDF(new window)
 Abstract
Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.
 Keywords
Enhancer;eRNAs;gene transcription;
 Language
Korean
 Cited by
 References
1.
Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P. and Proud-foot, N. J. 1997. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11, 2494-2509. crossref(new window)

2.
Bulger, M. and Groudine, M. 2011. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327-339. crossref(new window)

3.
De Santa, F., Barozzi, I., Mietton, F., Ghisletti, S., Polletti S., Tusi, B. K., Muller, H., Ragoussis, J., Wei, C. L. and Natoli, G. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384. crossref(new window)

4.
Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F. and et. al. 2012. Landscape of transcription in human cells. Nature 489, 101-108. crossref(new window)

5.
Hah, N., Murakami, S., Nagari, A., Danko, C. G. and Kraus, W. L. 2013. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23, 1210-1223. crossref(new window)

6.
Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching, C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., Wang, W., Weng, Z., Green, R. D., Crawford, G. E. and Ren, B. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311-318. crossref(new window)

7.
Hsieh, C. L., Fei, T., Chen, Y., Li, T., Gao, Y., Wang, X., Sun, T., Sweeney, C. J., Lee, G. S., Chen, S., Balk, S. P., Liu, X. S., Brown, M. and Kantoff, P. W. 2014. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl. Acad. Sci. USA 111, 7319-7324. crossref(new window)

8.
IIott, N. E., Heward, J. A., Roux, B., Tsitsiou, E., Fenwick, P. S., Lenzi, L., Goodhead, I., Hertz-Fowler, C., Heger, A., Hall, N., Donnelly, L. E., Sims, D. and Lindsay, M. A. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat. Commun. 5, 3979.

9.
Johnson, K. D., Grass, J. A., Park, C., Im, H., Choi, K. and Bresnick, E. H. 2003. Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain. Mol. Cell. Biol. 23, 6484-6493. crossref(new window)

10.
Kaikkonen, M. U., Spann, N. J., Heinz, S., Romanoski, C. E., Allison, K. A., Stender, J. D., Chun, H. B., Tough, D. F., Prinjha, R. K., Benner, C. and Glass, C. K. 2013. Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol. Cell 51, 310-325. crossref(new window)

11.
Kanno, T., Kanno, Y., LeRoy, G., Campos, E., Sun, H. W., Brooks, S. R., Vahedi, G., Heightman, T. D., Garcia, B. A., Reinberg, D., Siebenlist, U., O’Shea, J. J. and Ozato, K. 2014. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047-1057. crossref(new window)

12.
Kapranov, P., Willingham, A. T. and Gingeras, T. R. 2007. Genome-wide transcription and the implications for genomic organization. Nat. Rev. Genet. 8, 413-423. crossref(new window)

13.
Kim, K. and Kim, A. 2010. Sequential changes in chromatin structure during transcriptional activation in the β-globin LCR and its target gene. Int. J. Biochem. Cell Biol. 42, 1517-1524. crossref(new window)

14.
Kim, T. K., Hemberg, M., Gray, J. M., Costa, A. M., Bear, D. M., Wu, J., Harmin, D. A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., Markenscoff-Papadimitriou, E., Kuhl, D., Bito, H., Worley, P. F., Kreiman, G. and Greenberg, M. E. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182-187. crossref(new window)

15.
Kim, Y. W., Lee, S., Yun, J. and Kim, A. 2015. Chromatin looping and eRNA transcription precede the transcriptional activation of gene in the β-globin locus. Biosci. Rep. 35, e00179.

16.
Léveillé, N., Melo, C. A., Rooijers, K., Díaz-Lagares, A., Melo, S. A., Korkmaz, G., Lopes, R., Akbari Moqadam, F., Maia, A. R., Wijchers, P. J., Geeven, G., den Boer, M. L., Kalluri, R., de Laat, W., Esteller, M. and Agami, R. 2015. Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat. Commun. 6, 6520. crossref(new window)

17.
Lai, F., Orom, U. A., Cesaroni, M., Beringer, M., Taatjes, D. J., Blobel, G. A. and Shiekhattar, R. 2013. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497-501. crossref(new window)

18.
Lam, M. T., Cho, H., Lesch, H. P., Gosselin, D., Heinz, S., Tanaka-Oishi, Y., Benner, C., Kaikkonen, M. U., Kim, A. S., Kosaka, M., Lee, C. Y., Watt, A., Grossman, T. R., Rosenfeld, M. G., Evans, R. M. and Glass, C. K. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511-515. crossref(new window)

19.
Li, J., Moazed, D. and Gygi, S. P. 2002. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383-49388. crossref(new window)

20.
Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A. Y., Merkurjev, D., Zhang, J., Ohgi, K., Song, X., Oh, S., Kim, H. S., Glass, C. K. and Rosenfeld, M. G. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516-520. crossref(new window)

21.
Maruyama, A., Mimura, J. and Itoh, K. 2014. Non-coding RNA derived from the region adjacent to the human HO-1 E2 enhancer selectively regulates HO-1 gene induction by modulating Pol II binding. Nucleic Acids Res. 42, 13599-13614. crossref(new window)

22.
Melo, C. A., Drost, J., Wijchers, P. J., van de Werken, H., de Wit, E., Oude Vrielink, J. A., Elkon, R., Melo, S. A., Léveillé, N., Kalluri, R., de Laat, W. and Agami, R. 2013. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 49, 524-535. crossref(new window)

23.
Mousavi, K., Zare, H., Dell'orso, S., Grontved, L., Gutierrez-Cruz, G., Derfoul, A., Hager, G. L. and Sartorelli, V. 2013. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol. Cell 51, 606-617. crossref(new window)

24.
Ong, C. T. and Corces, V. G. 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293.

25.
Plank, J. L. and Dean, A. 2014. Enhancer function: mechanistic and genome-wide insights come together. Mol. Cell 55, 5-14. crossref(new window)

26.
Schaukowitch, K., Joo, J. Y., Liu, X., Watts, J. K., Martinez, C. and Kim, T. K. 2014. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29-42. crossref(new window)

27.
Tuan, D., Kong, S. and Hu, K. 1992. Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc. Natl. Acad. Sci. USA 89, 11219-11223. crossref(new window)

28.
Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Liu, W., Kaikkonen, M. U., Ohgi, K. A., Glass, C. K., Rosenfeld, M. G. and Fu, X. D. 2011. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390-394. crossref(new window)

29.
Wittschieben, B. O., Otero, G., de Bizemont, T., Fellows, J., Erdjument-Bromage, H., Ohba, R., Li, Y., Allis, C. D., Tempst, P. and Svejstrup, J. Q. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123-128. crossref(new window)

30.
Zhu, Y., Sun, L., Chen, Z., Whitaker, J. W., Wang, T. and Wang, W. 2013. Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res. 41, 10032-10043. crossref(new window)