Advanced SearchSearch Tips
Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.17-22
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.17
 Title & Authors
Investigation into the Ethanol Tolerance Mechanism by Regulation of Gene Expression
Jung, Hoe-Myung; Choi, Ho-Jung; Nam, Soo-Wan; Jeon, Sung-Jong; Kim, Yeon-Hee;
  PDF(new window)
Ethanol is a very valuable material, however, it is also a source of stress, as the accumulation of ethanol in a medium inhibits cell viability and decreases productivity of the target product. Therefore, the ethanol tolerance of yeast, which is closely related to ethanol productivity, is an important factor in industrial ethanol production. In this study, the YDJ1 and PEP5 genes were selected as target genes for elucidating ethanol-tolerant mechanisms by analyzing the expression regulation of these genes. The pA-YDJ1 and pA-PEP5 plasmids containing YDJ1 and PEP5 genes under an ADH1 promoter, respectively, were constructed and transformed into BY4742 (host strain), BY4742△ydj1, and BY4742△pep5 strains. The ethanol tolerance in the BY4742△ydj1/ pA-YDJ1 and BY4742△pep5/pA-PEP5 transformants was restored by overexpression of the YDJ1 and PEP5 genes to the host strain level. The YDJ1 and PEP5 genes were also introduced into the double gene disruptant (BY4742△ydj1△pep5) to investigate the expression regulation of the YDJ1 and PEP5 genes. The simultaneous overexpression of the YDJ1 and PEP5 genes restored ethanol tolerance to the 90% level of the BY4742 strain under 8% ethanol stress. The YDJ1 gene induced more overexpression of the PEP5 gene in the BY4742△ydj1 △pep5/pA-YDJ1, pA-PEP5 strain, suggesting that the YDJ1 gene partially regulates the expression of the PEP5 gene as an upstream regulator.
Ethanol tolerance;expression regulation;PEP5 gene;simultaneous overexpression;YDJ1 gene;
 Cited by
Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. and Stephanopoulos, G. 2006. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565-1568. crossref(new window)

Attfield, P. V. 1997. Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 15, 1351-1357. crossref(new window)

Birch, R. M. and Walker, G. M. 2000. Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Micro. Technol. 26, 678-687. crossref(new window)

Dinh, T. N., Nagahisa, K., Yoshikawa, K., Hirasawa, T., Furusawa, C. and Shimizu, H. 2009. Analysis of adaptation to high ethanol concentration in Saccharomyces cerevisiae using DNA microarray. Bioprocess Biosyst. Eng. 32, 681-688. crossref(new window)

French, S. L., Osheim, Y. N., Cioci, F., Nomura, M. and Beyer, A. L. 2003 In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol. Cell. Biol. 23, 1558-1568. crossref(new window)

Gietz, R. D. and Schiestl, R. H. 1995. Transforming yeast with DNA. Methods Mol. Cell Biol. 5, 225-269.

Hu, X. H., Wang, M. H., Tan, T., Li, J. R., Yang, H., Leach, L., Zhang, R. M. and Luo, Z. W. 2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175, 1479-1487.

Hummon, A. B., Lim, S. R., Difilippantonio, M. J. and Ried, T. 2007. Isolation and solubilization of proteins after TRIZOL extraction of RNA and DNA from patient material following prolonged storage. BioTechniques 42, 467-472. crossref(new window)

Inoue., T., Iefuji, H., Fujii, T., Soga, H. and Satoh, K. 2000. Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci. Biotechnol. Biochem. 64, 229-236. crossref(new window)

Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimization for production of exo-β-1,3-glucanase (laminarinase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 26, 427-432.

Kim, Y. H., Ishikawa, D., Ho, P. H., Sugiyama, M., Kaneko, Y. and Haraghima, S. 2006. Chromosome XII context is important for rDNA function in yeast. Nucleic. Acids Res. 34, 2914-2924. crossref(new window)

Ko J. K., Bak, J. S., Jung, M. W., Lee, H. J., Choi, I. G., Kim, T. H. and Kim, K. H. 2009. Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100, 4374-4380. crossref(new window)

Kubota, S. Takeo, I., Kume, K., Kanai, M., Shitamukai, A., Mizunuma, M., Miyakawa, T., Shimoi, H., Iefuji, H. and Hirata, D. 2004. Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. Biosci. Biotechnol. Biochem. 68, 968-972. crossref(new window)

Park, A. H., Sugiyama, M., Harashima, S. and Kim, Y. H. 2012. Creation of an ethanol-tolerant yeast strain by genome reconstruction based on chromosome splitting technology. J. Microbiol. Biotechnol. 22, 184-189. crossref(new window)

Park, A. H. and Kim, Y. H. 2013. Breeding of ethanol producing and tolerant Saccharomyces cerevisiae by using genome shuffling. J. Life Sci. 23, 1192-1198. crossref(new window)

Stanley, G. and Hahn-Hägerdal, B. 2010. Fuel ethanol production from lignocellulosic raw materials using recombinant yeasts. In Biomass to Biofuels: Strategies for Global Industries (eds A. A. vertès, N. Qureshi, H. P. Blaschek and H. Yukawa). Blackwell Publishing Ltd., Oxford. UK.

Takahashi, T., Shimoi, H. and Ito, K. 2001. Identification of genes required for growth under ethanol stress using transposon mutagenesis in Saccharomyces cerevisiae. Mol. Genet. Genomics 265, 1112-1119. crossref(new window)

Van Voorst, F., Houghton-Larsen, J., Jønson, L., Kielland-Brandt, M. C. and Brandt, A. 2006. Genome-wide identification of genes required for growth of Saccharomyces cerevisiae under ethanol stress. Yeast 23, 351-359. crossref(new window)

Yadav, K. S., Naseeruddin, S., Prashanthi, G. S., Sateesh, L. and Rao, L. V. 2011. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour. Technol. 102, 6473-6478. crossref(new window)