Advanced SearchSearch Tips
Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.34-41
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.34
 Title & Authors
Mechanisms for Anti-wrinkle Activities from Fractions of Black Chokeberries
Choi, Eun-Young; Kim, Eun-Hee; Lee, Jae-Bong; Do, Eun-Ju; Kim, Sang-Jin; Kim, Se-Hyeon; Park, Jeong-Yeol; Lee, Jin-Tae;
  PDF(new window)
Black chokeberries (scientific name Aronia melanocarpa) have been reported to have major effects due to anti-oxidant, anti-inflammatory, and anti-cancer capabilities. In this study, we investigated the anti- wrinkle effects of A. melanocarpa, including collagenase inhibition effects and their molecular biological mechanisms, such as oxidative stress-induced matrix metalloproteinase (MMP), mitogen-activated protein (MAP) kinase, and activator protein (AP)-1 expression and/or phosphorylation. In collagenase inhibition activity, the ethyl acetate fraction of black chokeberry (AE) was 77.2% at a concentration of 500 μg/ml, which was a significant result compared to that of Epigallocatechin gallate (positive control, 83.9% in 500 μg/ml). In the reactive oxygen species (ROS) assay, the AE produced 78% of ROS in 10 μg/ml and 70% of ROS in 75 μg/ml, which was a much lower percentage than the ROS production of H2O2-induced CCRF S-180II cells. In the MTT assay, cell viability was increased dose-dependently with AE in H2O2-induced cells. In protein expression by western blot assay, the AE suppressed the expression and phosphorylation of MMPs (MMP-1, -3, -9), MAPK (ERK, JNK, and p38), and AP-1 (c-Fos and c-Jun), and expressed the pro-collagen type I in H2O2-induced cells. These results suggest that black chokeberries have anti-wrinkle and collagen-production effects, and they may be used in applications for material development in the functional food and cosmetic industries.
Anti-aging;black chokeberry;collagen type I;MAPKinase;matrix metallopreinases;
 Cited by
Ahmad, S. 1995. Oxidative stress and antioxidant defenses in biology, pp. 211-214, Chapman & Hall, New York. USA.

Angel, P. and Karin, M. 1991. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim. Biophys. Acta. 1072, 129-157.

Brinckerhoff, C. E., Rutter, J. L. and Benbow, U. 2000. Interstitial collagenases as markers of tumor progression. Clin. Cancer Res. 6, 4823-4830.

Charous, S. J., Stricklin, G. P., Nanney, L. B. and Burkey, B. B. 1997. Expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases in head and neck squamous cell carcinoma. Ann Oto Rhino. 106, 271-278 crossref(new window)

Chen, C. C., Mo, F. E. and Lau, L. F. 2001. The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts. J. Biol. Chem. 276, 47329-47337. crossref(new window)

Curran, S. and Murray, G. 1999. Matrix metalloproteinases in tumor invation and metastasis. J Pathol. 189, 300-308. crossref(new window)

Fanger, G. R., Johnson, N. L. and Johnson, G. L. 1997. MEK kinases are regulated by EGF and selectively interact with ac/Cdc42. EMBO J. 16, 4961-4972. crossref(new window)

Fisher, G. J., Datta, S., Talwar, H. S., Wang, Z. Q., Varani, J., Kang, S. and Voorhees, J. J. 1996. Molecular basis of sun-induced premature ageing and retinoid antagonism. Nature 379, 335-339. crossref(new window)

Fisher, G. J., Talwar, H. S., Lin, J. Y., Lin, P. P., McPhillips, F., Wang, Z. Q., Li, X. Y., Wan, Y. S., Kang, S. and Voorhees, J. J. 1998. Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo. J. Clin. Invest. 101, 1432-1440. crossref(new window)

Fisher, G. J., Wang, Z. Q., Datta, S. C., Varani, J., Kang, S. and Voorhees, J. J. 1997. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 337, 1419-1428. crossref(new window)

Gross, J. and Lapiere, C. M. 1962. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl. Acad. Sci. USA 54, 1197-1204.

Hwang, H. J., Jung, B. M. and Kim, M. H. 2011. ROS scavenging effect and cell viability of Opuntia humifusa extract on Osteoblastic MC3T3-E1 cells. J. Life Sci. 21, 1752-1760. crossref(new window)

Jakobek, L., Drenjan, evi. M., Juki, V. and Šeruga, M. 2012. Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Scientia Horticulturae. 147, 56-63. crossref(new window)

Jayaprakasha, G. K., Jaganmohan, Rao. L. and Sakariak, K. K. 2004. Antioxidant activities of flavidin in different in vitro moder system. Bioorg. Med. Chem. 12, 5141-5146. crossref(new window)

Jankowski, A., Niedworok, J. and Jankowska, B. 1999. The influence of aronia melanocarpa elliot on experimental diabetes in the rats. Herba Polonica. 45, 345-353.

Jeppsson, N. and Johansson, R. 2000. Changes in fruit quality in black chokeberry (Aronia melanocarpa) during maturation. J. Hortic. Sci. Biotech. 75, 340-345. crossref(new window)

Kusukawa, J., Harada, H., Shima, I., Sasaguri, Y., Kameyama, T. and Morimatsu, M. 1996. The significance of epithelial growth factor receptor and matrix metalloproteinase-3 in stage I and II squamous cell carcinoma of the oral cavity. Oral Oncol. Eur. J. Cancer 32B, 217-221.

Lee, S. J., Choi, H. R., Lee, J. C., Park, H. j., Lee, H. K., Jeong, J. T. and Lee, T. B. 2014. The anti-aging effects of various berries in the human skin keratinocyte (HaCaT) cells. Kor. J. Food Sci. Technol. 46, 198-204. crossref(new window)

Lee, S. Y. and Lee, J. Y. 2013. Inhibitory efficacy of Smilax china L. on pro-collagen type-1 activity and MMP-1 gene expression in fibroblasts (CCD-986sk). J. Life Sci. 23, 1239-1245. crossref(new window)

Masaki, H., Atsumi, T. and Sakurai, H. 1995. Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem. Biophys. Res. Commun. 206, 474-479. crossref(new window)

Michiels, C., Raes, M., Toussaint, O. and Remacle, J. 1994. Importance of SE-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17, 235-248. crossref(new window)

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55-63. crossref(new window)

Niedworok, J., Jankowska, B., Kowalczyk, E., Charyk, K. and Kubat, Z. 1997. Antiulcer activity of anthocyanin from Aronia melanocarpa Elliot. Herba Polonica. 43, 222-227.

Pawson, T. and Scott, J. D. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075-2080. crossref(new window)

Rice-Evans, C. A., Miller, N. J. and Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Review article. Free Rad. Biol. Med. 20, 933-956. crossref(new window)

Steinberg, D. 1997. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 272, 2963-2966. crossref(new window)

Sueiro, L., Yousef, G. G., Seigler, D., De, Mejia. E. G., Grace, M. H. and Lila, M. A. 2006. Chemopreventive potential of flavonoid extracts from plantation-bred and wild Aronia melanocarpa (black chokeberry) fruits. J. Food Sci. 71, C480-C488. crossref(new window)

Wűnsch, E. and Heindrich, H. G. Zur. 1963. Quantitativen bestimmung der collagenase. Hoppe-Seyler’s Physiol. Chem. 333, 149-151. crossref(new window)