JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.50-58
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.50
 Title & Authors
Immunomodulatory Activity of Water Extract of Ulmus macrocarpa in Macrophages
Kwon, Da Hye; Kang, Hye-Joo; Choi, Yung Hyun; Chung, Kyung Tae; Lee, Jong Hwan; Kang, Kyung Hwa; Hyun, Sook Kyung; Kim, Byung Woo; Hwang, Hye Jin;
  PDF(new window)
 Abstract
The root bark of Ulmus macrocarpa has been used in traditional medicine for the treatment of various diseases such as edema, infection and inflammation. Nevertheless, the biological activities and underlying mechanisms of the immunomodulatory effects remain unclear. In this study, as part of our ongoing screening program to evaluate the immunomodulatory potential of new compounds from traditional medicinal resources, we investigated the effects of U. macrocarpa water extract (UME) on immune modulation in a murine RAW 264.7 macrophage model. As immune response parameters, the productions of as nitric oxide (NO) and cytokines such tumor necrotic factor (TNF)-α, interleukin (IL)-1β and IL-10 were evaluated. Although the release of IL-1β remained unchanged in UME-treated RAW 264.7 macrophages, the productions of NO, TNF-α and IL-10 were significantly increased, along with the increased expression of inducible NO synthase, TNF-α and IL-10 expression at concentrations with no cytotoxicity. UME treatment also induced the nuclear translocation of nuclear factor κB (NF-κB), and phosphorylation of Akt and mitogen-activated protein kinases (MAPKs) indicating that UME activated macrophages through the activation of NF-κB, phosphoinositide-3-kinase (PI3K)/Akt and MAPKs signaling pathways in RAW 264.7 macrophages. Furthermore, pre-treatment with UME significantly attenuated the production of NO, but not TNF-α, IL-1β and IL-10, in lipopolysaccharide-stimulated RAW 264.7 cells suggesting that UME may be useful in preventing inflammatory diseases mediated by excessive production of NO. These findings suggest that the beneficial therapeutic effects of UME may be attributed partly to its ability to modulate immune functions in macrophages.
 Keywords
Cytokine;Immunomodulation;macrophages;NO;RAW 264.7;Ulmus macrocarpa;
 Language
Korean
 Cited by
 References
1.
Arthur, J. S. and Ley, S. C. 2013. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679-692. crossref(new window)

2.
Beutler, B. 2004. Innate immunity: an overview. Mol. Immunol. 40, 845-859. crossref(new window)

3.
Choi, H. S., Kim, S. R., Hong, S. H., Ku, J. M., Kim, M. K., Seo, H. S., Cho, S. G., Shin, S., Shin, Y. C. and Ko, S. G. 2013. Water extract of deer bones activates macrophages and alleviates neutropenia. Evid. Based Complement. Alternat. Med. 2013, 617302.

4.
Gasparini, C. and Feldmann, M. 2012. NF-κB as a target for modulating inflammatory responses. Curr. Pharm. Des. 18, 5735-5745. crossref(new window)

5.
Guzik, T. J., Korbut, R. and Adamek-Guzik, T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54, 469-487.

6.
Hayden, M. S. and Ghosh, S. 2014. Regulation of NF-κB by TNF family cytokines. Semin. Immunol. 26, 253-266. crossref(new window)

7.
Hibbs, J. B., Taintor, R. R. and Vavrin, Z. 1987. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235, 473-479. crossref(new window)

8.
Ivashkiv, L. B. 2011. Inflammatory signaling in macrophages: transitions from acute to tolerant and alternative activation states. Eur. J. Immunol. 41, 2477-2481. crossref(new window)

9.
Kayser, O., Masihi, K. N. and Kiderlen, A. F. 2003. Natural products and synthetic compounds as immunomodulators. Expert. Rev. Anti-Infect. Ther. 1, 319-335. crossref(new window)

10.
Klimp, A. H., de Vries, E. G., Scherphof, G. L. and Daemen, T. 2002. A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44, 143-161. crossref(new window)

11.
Kwon, J. H., Kim, S. B., Park, K. H. and Lee M. W. 2011. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res. 34, 1459-1466. crossref(new window)

12.
Kwon, Y. M., Lee, J. H. and Lee, M. W. 2002. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidative activities. Kor. J. Pharmacogn. 33, 404-410.

13.
Lane, T. and Lachmann, H. J. 2011. The emerging role of interleukin-1β in autoinflammatory diseases. Curr. Allergy Asthma Rep. 11, 361-368. crossref(new window)

14.
Lee, J. S. and Hong, E. K. 2011. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 11, 1226-1233. crossref(new window)

15.
Liew, F. Y., Wei, X. Q. and Proudfoot, L. 1997. Cytokines and nitric oxide as effector molecules against parasitic infections. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352, 1311-1315. crossref(new window)

16.
Liles, W. C. 2001. Immunomodulatory approaches to augment phagocyte-mediated host defense for treatment of infectious diseases. Semin. Respir. Infect. 16, 11-17. crossref(new window)

17.
Locksley, R. M., Killeen, N. and Lenardo, M. J. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501. crossref(new window)

18.
Lorsbach, R. B., Murphy, W. J., Lowenstein, C. J., Snyder, S. H. and Russell, S. W. 1993. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing.molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J. Biol. Chem. 268,1908-1913.

19.
MacMicking, J., Xie, Q. W. and Nathan, C. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-550. crossref(new window)

20.
Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S. Jr. and Mayo, M. W. 2000. Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol. Cell. Biol. 20, 1626-1638. crossref(new window)

21.
Medzhitov, R. and Janeway, C. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89-97. crossref(new window)

22.
Murray, P. J. and Wynn, T. A. 2011. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737. crossref(new window)

23.
Patel, T. N., Shishehbor, M. H. and Bhatt, D. L. 2007. A review of high-dose statin therapy: targeting cholesterol and inflammation in atherosclerosis. Eur. Heart J. 28, 664-672. crossref(new window)

24.
Pinto, M. R., Melillo, D., Giacomelli, S., Sfyroera, G. and Lambris, J. D. 2007. Ancient origin of the complement system: emerging invertebrate models. Adv. Exp. Med. Biol. 598, 372-388. crossref(new window)

25.
Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. and Schwarz, E. M. 2003. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821-831. crossref(new window)

26.
Saponaro, C., Cianciulli, A., Calvello, R., Dragone, T., Iacobazzi, F. and Panaro, M. A. 2012. The PI3K/Akt pathway is required for LPS activation of microglial cells. Immunopharmacol. Immunotoxicol. 34, 858-865. crossref(new window)

27.
Schreiber, S., Heinig, T., Thiele, H. G. and Raedler, A. 1995. Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease. Gastroenterology 108, 1434-1444. crossref(new window)

28.
Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M. and Agarwal, S. S. 2000. Modulation of autoimmune diseases by nitric oxide. Immunol. Res. 22, 1-19. crossref(new window)

29.
Storck, M., Schilling, M., Burkhardt, K., Prestel, R., Abendroth, D. and Hammer, C. 1994. Production of proinflammatory cytokines and adhesion molecules in ex-vivo xenogeneic kidney perfusion. Transpl. Int. 7, 647-649. crossref(new window)

30.
Tripathi, P. 2007. Nitric oxide and immune response. Indian J. Biochem. Biophys. 44, 310-319.

31.
Wang, D., Zhang, S., Li, L., Liu, X., Mei, K. and Wang, X. 2010. Structural insights into the assembly and activation of IL-1β with its receptors. Nat. Immunol. 11, 905-911. crossref(new window)

32.
Wolf, S. F., Sieburth., D. and Sypek, J. 1994. Interleukin 12: a key modulator of immune function. Stem Cell 12, 154-168. crossref(new window)

33.
Yang, W. K., Lee, J. J., Sung, Y. Y., Kim, D. S., Myung, C. S. and Kim, H. K. 2013. Extract of Ulmus macrocarpa Hance prevents thrombus formation through antiplatelet activity. Mol. Med. Rep. 8, 726-730.

34.
Zhou, D., Huang, C., Lin, Z., Zhan, S., Kong, L., Fang, C. and Li, J. 2014. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26, 192-197. crossref(new window)