Advanced SearchSearch Tips
Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Journal of Life Science
  • Volume 26, Issue 1,  2016, pp.8-16
  • Publisher : Korean Society of Life Science
  • DOI : 10.5352/JLS.2016.26.1.8
 Title & Authors
Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells
Park, Ki-Youb; Na, Yerin; Kim, Man Su;
  PDF(new window)
Reactive oxygen species (ROS), at appropriate concentrations, mediate various normal cellular functions, including defense against pathogens, signal transduction, cellular growth, and gene expression. A recent study demonstrated that ROS and ROS-generating NADPH oxidase (Nox) are important in self-renewal and neuronal differentiation of subventricular zone (SVZ) neural stem cells in adult mouse brains. In this study, we found that endogenous ROS were detected in SVZ neural stem cells cultured from postnatal mouse brains. Nox4 was predominantly expressed in cultured cells, while the levels of the Nox1 and Nox2 transcripts were very low. In addition, the Nox4 gene was highly upregulated (by up to 10-fold) during neuronal differentiation. Immunocytochemical analysis detected the Nox4 protein mainly in neurons positive for the neuronal specific tubulin Tuj1. After differentiation, endogenous ROS were detected exclusively in neuron-like cells with processes. In addition, perturbation of the cellular redox state with N-acetyl cysteine, a ROS scavenger, during neuronal differentiation greatly inhibited neurogenesis. Lastly, knockdown of Nox4 using short hairpin RNA decreased neurogenesis. These findings suggest that Nox4 may be a major ROS-generating enzyme in postnatal SVZ neural stem cells, and Nox4-mediated ROS generation may be important in their neuronal differentiation.
NADPH oxidase-4 (Nox4);neural stem cells (NSCs);neuronal differentiation;reactive oxygen species (ROS);subventricular zone (SVZ);
 Cited by
Alfadda, A. A. and Sallam, R. M. 2012. Reactive oxygen species in health and disease. J. Biomed. Biotechnol. 2012, 936486.

Bigarella, C. L., Liang, R. and Ghaffari, S. 2014. Stem cells and the impact of ros signaling. Development 141, 4206-4218. crossref(new window)

Chuikov, S., Levi, B. P., Smith, M. L. and Morrison, S. J. 2010. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat. Cell Biol. 12, 999-1006. crossref(new window)

Dickinson, B. C., Peltier, J., Stone, D., Schaffer, D. V. and Chang, C. J. 2011. Nox2 redox signaling maintains essential cell populations in the brain. Nat. Chem. Biol. 7, 106-112. crossref(new window)

Doetsch, F., Garcia-Verdugo, J. M. and Alvarez-Buylla, A. 1997. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046-5061. crossref(new window)

Domenis, R., Bergamin, N., Gianfranceschi, G., Vascotto, C., Romanello, M., Rigo, S., Vagnarelli, G., Faggiani, M., Parodi, P., Kelley, M. R., Beltrami, C. A., Cesselli, D., Tell, G. and Beltrami, A. P. 2014. The redox function of ape1 is involved in the differentiation process of stem cells toward a neuronal cell fate. PLoS One 9, e89232. crossref(new window)

Forsberg, K. and Di Giovanni, S. 2014. Cross talk between cellular redox status, metabolism, and p53 in neural stem cell biology. Neuroscientist 20, 326-342. crossref(new window)

Haack, F., Lemcke, H., Ewald, R., Rharass, T. and Uhrmacher, A. M. 2015. Spatio-temporal model of endogenous ros and raft-dependent wnt/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput. Biol. 11, e1004106. crossref(new window)

Hou, Y., Ouyang, X., Wan, R., Cheng, H., Mattson, M. P. and Cheng, A. 2012. Mitochondrial superoxide production negatively regulates neural progenitor proliferation and cerebral cortical development. Stem Cells 30, 2535-2547. crossref(new window)

Hwang, W. W., Salinas, R. D., Siu, J. J., Kelley, K. W., Delgado, R. N., Paredes, M. F., Alvarez-Buylla, A., Oldham, M. C. and Lim, D. A. 2014. Distinct and separable roles for ezh2 in neurogenic astroglia. Elife 3, e02439.

Infanger, D. W., Sharma, R. V. and Davisson, R. L. 2006. Nadph oxidases of the brain: Distribution, regulation, and function. Antioxid. Redox Signal. 8, 1583-1596. crossref(new window)

Kanda, Y., Hinata, T., Kang, S. W. and Watanabe, Y. 2011. Reactive oxygen species mediate adipocyte differentiation in mesenchymal stem cells. Life Sci. 89, 250-258. crossref(new window)

Kim, J. and Wong, P. K. 2009. Loss of atm impairs proliferation of neural stem cells through oxidative stress-mediated p38 mapk signaling. Stem Cells 27, 1987-1998. crossref(new window)

Kim, S. R., Kim, D. I., Kim, S. H., Lee, H., Lee, K. S., Cho, S. H. and Lee, Y. C. Nlrp3 inflammasome activation by mitochondrial ros in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis. 5, e1498. crossref(new window)

Le Belle, J. E., Orozco, N. M., Paucar, A. A., Saxe, J. P., Mottahedeh, J., Pyle, A. D., Wu, H. and Kornblum, H. I. 2011. Proliferative neural stem cells have high endogenous ros levels that regulate self-renewal and neurogenesis in a pi3k/akt-dependant manner. Cell Stem Cell 8, 59-71. crossref(new window)

Lee, J. E., Cho, K. E., Lee, K. E., Kim, J. and Bae, Y. S. 2014. Nox4-mediated cell signaling regulates differentiation and survival of neural crest stem cells. Mol. Cells 37, 907-911. crossref(new window)

Lim, D. A., Huang, Y. C., Swigut, T., Mirick, A. L., Garcia-Verdugo, J. M., Wysocka, J., Ernst, P. and Alvarez-Buylla, A. 2009. Chromatin remodelling factor mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 458, 529-533. crossref(new window)

Liu, J., Cao, L., Chen, J., Song, S., Lee, I. H., Quijano, C., Liu, H., Keyvanfar, K., Chen, H., Cao, L. Y., Ahn, B. H., Kumar, N. G., Rovira, II., Xu, X. L., van Lohuizen, M., Motoyama, N., Deng, C. X. and Finkel, T. 2009. Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature 459, 387-392. crossref(new window)

Menn, B., Garcia-Verdugo, J. M., Yaschine, C., Gonzalez-Perez, O., Rowitch, D. and Alvarez-Buylla, A. 2006. Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907-7918. crossref(new window)

Park, D. H., Hong, S. J., Salinas, R. D., Liu, S. J., Sun, S. W., Sgualdino, J., Testa, G., Matzuk, M. M., Iwamori, N. and Lim, D. A. 2014. Activation of neuronal gene expression by the jmjd3 demethylase is required for postnatal and adult brain neurogenesis. Cell Rep. 8, 1290-1299. crossref(new window)

Park, J. E., Seo, Y. K., Yoon, H. H., Kim, C. W., Park, J. K. and Jeon, S. 2013. Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ros mediated egfr activation. Neurochem. Int. 62, 418-424. crossref(new window)

Price, J. D., Park, K. Y., Chen, J., Salinas, R. D., Cho, M. J., Kriegstein, A. R. and Lim, D. A. 2014. The ink4a/arf locus is a barrier to direct neuronal transdifferentiation. J. Neurosci. 34, 12560-12567. crossref(new window)

Sanders, Y. Y., Liu, H., Liu, G. and Thannickal, V. J. 2015. Epigenetic mechanisms regulate nadph oxidase-4 expression in cellular senescence. Free Radic. Biol. Med. 79, 197-205. crossref(new window)

Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., Sienkiewicz, A., Forro, L., Schlegel, W. and Krause, K. H. 2007. Nox4 activity is determined by mrna levels and reveals a unique pattern of ros generation. Biochem. J. 406, 105-114. crossref(new window)

Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S. M., Goderie, S. K., Roysam, B. and Temple, S. 2008. Adult svz stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289-300. crossref(new window)

Sorce, S. and Krause, K. H. 2009. Nox enzymes in the central nervous system: From signaling to disease. Antioxid. Redox Signal. 11, 2481-2504. crossref(new window)

Sumimoto, H. 2008. Structure, regulation and evolution of nox-family nadph oxidases that produce reactive oxygen species. FEBS J. 275, 3249-3277. crossref(new window)

Topchiy, E., Panzhinskiy, E., Griffin, W. S., Barger, S. W., Das, M. and Zawada, W. M. 2013. Nox4-generated superoxide drives angiotensin ii-induced neural stem cell proliferation. Dev. Neurosci. 35, 293-305. crossref(new window)

Vieira, H. L., Alves, P. M. and Vercelli, A. 2011. Modulation of neuronal stem cell differentiation by hypoxia and reactive oxygen species. Prog. Neurobiol. 93, 444-455. crossref(new window)

Walton, N. M., Shin, R., Tajinda, K., Heusner, C. L., Kogan, J. H., Miyake, S., Chen, Q., Tamura, K. and Matsumoto, M. 2012. Adult neurogenesis transiently generates oxidative stress. PLoS One 7, e35264. crossref(new window)

Wei, W., Lu, Y., Hao, B., Zhang, K., Wang, Q., Miller, A. L., Zhang, L. R., Zhang, L. H. and Yue, J. 2015. Cd38 is required for neural differentiation of mouse embryonic stem cells by modulating reactive oxygen species (ros). Stem Cells. 33, DOI: 10.1002/stem.2057. crossref(new window)

Xiao, Q., Luo, Z., Pepe, A. E., Margariti, A., Zeng, L. and Xu, Q. 2009. Embryonic stem cell differentiation into smooth muscle cells is mediated by nox4-produced h2o2. Am. J. Physiol. Cell Physiol. 296, C711-723. crossref(new window)

Yoneyama, M., Kawada, K., Gotoh, Y., Shiba, T. and Ogita, K. 2010. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem. Int. 56, 740-746. crossref(new window)

Zelko, I. N. and Folz, R. J. 2015. Regulation of oxidative stress in pulmonary artery endothelium: Modulation of ec-sod and nox4 expression using hdac class i inhibitors. Am. J. Respir. Cell Mol. Biol. 53, 513-524. crossref(new window)